
77 T7 77-- -N,

NAVAL POSTGRADUATE SCHOOL
00 Monterey , California

co:

SR AD IDT IC
LE(-11 r~

SEP 0 7 1988THESIS D00

DOCUMENT GENERATOR SOFTWARE DESIGN .'.*

THAT SUPPORTS TURKISH ALPHABET

by

Metin Akinci

June 1988

Thesis Advisor: Daniel Davis

Approved for public release; distribution is unlimited _

'%h.t~

UNCLASSIFIl.
SECURITY CLASSiFICATION S= " S ,(-

REPORT DOCUMENTATION PAGE
Ila. REPORT SECURITY CLASSIF,CAT ON Io RESTRICTIVE MARKINGS

Unclassified
Za. SECURITY C.ASSiFiCAT!ON Au T- ORFr S3 . DISTRIBU TION, AVAILABILITY OF REPORr

2D OEC,ASSF:CAON 0OVwGRAJINC, SCDUL: Approved for public release;
distribution is unlimited

4 PERFORMING ORGAiiZATION REPORT Nk4IBERS) 5 MONITORING ORGANIZATION REPORT NLMBER(S,

ba. NAME OF PERFORMING ORGANIZATON 6o OFF;C- SYMBOL 7a, NAME OF MONITORING ORGANIZATION
(if aOpicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c. ADCRESS (Cry, State, and ZIPCode) 7b. AOO/ESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Sa. NAME OF FUNDING, SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Cooe) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Securty Classification)
DOCUMENT GENERATOR SOFTWARE DESIGN THAT SUPPORTS TURKISH ALPHABET

12. PERSONAL AUTHOR(S)
Akinci, Metin

13a. TYPE OF. REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master's Thesis FROM TO ____ 1988 JUne

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the officialpolicv or Position of the Dep ant of nafencp _I Tho I, -Z

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block numoer)
FIELD GROUP SUB-GROUP EGA, CGA, TSR, ADT, Information hiding, Abstraction

19, ABSTRACT (Continue on reverse it necessary and identify by block number)

The objective of this study is to design and implement software for an automatic document e
generator supporting the Turkish alphabet. The implementation in this study in mainly based
on IBM personal computers and dot matrix printers.

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED C SAME AS RPT " OTIC USERS TTnc!la 1 sffied

2,ca NAME OF RESPONSIBLE N IVIDUAL 22b TELEPHONE (Include Area Code) 42c OFFICE SYMBOL

0 rof, ,n iP IA,. iq (408) 646-3091 Code 52Dv
DO FORM 1473, 4 MAR 33 APR easrlon may oe usea unti exnaustea. SECURITY CLASS;:;CATION OF THIS PAGE

S " eoitlons e uosoletL UNCLASSI HILECIG..... .. 1,..i o oi- ti-.4.;2. p

%i

Approved for public release; distribution is unlimited.

Document Generator Software Design that Supports Turkish
Alphabet

by .
Metin Akinci

Lieutenant J.O. Turkish Navy
B.S., Turkish Naval Academy. 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author:

Metin Akinci

Approved by-I

Daniel Davis, Thesis Advisor
=- . w

John X,. Yurchak, Second Reader

Robert N e.- Acting Chairman,

Jamp Fegea ,cling Dean of .

nformation d P licy Sciences

S.

LI B

FR7V
'ii

ABSTRACT

The objective of this study is to design and implement software for an automatic

document generator supporting the Turkish alphabet. The implementation in this study

is mainly based on IBM personal computers and dot matrix printers.

Tw.

A -1..;.

, tS

, 3: , , .. , "t /

r . . . --

cv:
... .5

1)O

-_o

' K;

A-i,:

,i

-- un-M n -1--7 n. IFF . . aM-v - * * -

TABLE OF CONTENTS

I. IN T R O D U C T IO N .. I
A . P U R P O SE I

B . SC O P E . 2

C. O RGA N IZA TION ... 2

II. SYSTEM OVERVIEW AND OBJECTIVES 3

A. IN TROD UCTION ... 3
B. SYSTEM OVERVIEW AND USER REQUIREMENTS 3

C. OVERALL DESIGN CONSIDERATIONS 4

D. HARDWARE REQUIREMENTS 4

E. PROGRAM COMPONENTS 5

III. DESIGN AND IMPLEMENTATION 6

A . IN TROD UCTION ... 6

B. OVERALL PROGRAM DESIGN CONSIDERATIONS 6
C. PROGRAMS IN THIS PROJECT 9

1. TEM PLA TE.C: .. 8
2. E D IT O R .C : .. 11

3. D BA SE .C : ... 12

4. U SE R IN T .C : ... 13

5. SY ST E M .C : .. 13
6. P R IN T E R .C : ... 13

7. Y M A IN .C : ... 15
7. D LA D T .C : 15

9. L LA D T .C : 17

90. EG A C H R .C : .. 17

11. CGACHR.C: .. 17
D. PORTABILITY AND REUSABILITY ISSUES 17

IV. IMPLEMENTATION OF SPECIAL CHARACTERS IN TURKISH -

A P H A B E T 20iv

A. TO CREATE SPECIAL CHARACTERS ON SCREEN 20

B. PRINTING SPECIAL CHARACTERS ON PRINTER 23

V. USING THE DOCUMENT GENERATOR 7

VI. CONCLUSIONS AND RECOMMENDATIONS 29

APPENDIX A. TURKISH APHABET 30

APPENDIX B. USER MANUAL 31

A. INTRODUCTION...31

B. REQ U IREM EN TS .. 31

C. GETTING STA RTED 32

1. ENTERING EXTRA CHARACTERS IN THE TURKISH ALPHA-

B E T ..3 3

2. USING DOCUMENT GENERATOR 33

a. PREPARING DOCUMENT 33

b. BROWSING ANY DOCUMENT FROM DATABASE 35

c. ENTERING INCOMING DOCUMENT LOG 35

d. PRINTING INCOMING DOCUMENT LOG 35

e. EX IT TO D O S 36

3. HOW TO PREPARE NEW TEMPLATE 36

APPENDIX C. PROGRAM LISTINGS 38

APPENDIX D. EXAMPLE TEMPLATE AND PROGRAM OUTPUT DOCU-

M E N T ... 12 1

LIST OF REFERENCES ... 123

INITIAL DISTRIBUTION LIST 124

.p.

.- -' *w,-o"

LIST OF FIGURES

Figure 1. Program C om ponents 7 ,

Figure 2. Data Structure for Template.C Program Module 10

Figure 3. Data Structure for Dbase.C Program Module 14
Figure 4. Data Structure for Double Linked List Abstract Data Type 16
Figure 5. Data Structure for Linked List Abstract Data Type IS
Figure 6. Memory and Screen Representation of Character for CGA 22 1,
Figure 7. Memory and Screen Representation of Character for EGA 24
Figure 8. Character Representation for Printer 26
Figure 9. Field Com ponents .. 37

vi4

.r*

*1'

vi4

4',/

,,5

I. INTRODUCTION

Technological advances in computer hardware and software of the past decade has

been rapid enough to be called a revolution. The wider the use of computers has been

spread, the more newer application areas have evolved. The need for the use of the
computers for the Turkish Navy has grown rapidly in recent years. However, the ab-
sence of the computer technology has limited the variety of areas where computers can

be used. One aspect of the absence of this technology is the inability to use some char-

acters in the Turkish alphabet. Because of this, computers are not widely being used for
text processing purposes.

Although the Turkish Navy has begun to use computers in a variety of areas in re-
cent years, lower level organizations such as ships and administrative offices have been

doing business without the use of computers. One significant example of these jobs is
to generate and to process official documents.

Questions we plan to address are: Can we use microcomputers to generate and store

official documents in computers and will this reduce the amount of paper work? Does

current technology allow us to use our own alphabet to generate documents? If the

answer is 'yes', what is the most suitable hardware for these purposes?

This research attempts to find answers to these questions and investigate the current
microcomputer technology to determine the feasiblity of text processing on different

character sets not available on the system. To apply this to a specific area, we will de-

sign and implement software that meets the requirements for the specific application, in

order to generate and process official documents.

A. PURPOSE

We investigate the current microcomputer technology in order to be able to design

and implement a software that allows us to display and print extra characters in the

Turkish alphabet.

This study is a design and implementation of software which can be used in ship
bureaus to generate and process unclassified documents which includes all characters in
the Turkish alphabet. By using microcomputers on this particular area, the amount of

paper work, the loss of manpower and the negative impact of the lack of personnel can

be reduced. It also saves space by allowing us to get rid of files that are used to keep a

record of correspondence.

rN',,0

,5*,,.

"- . "tr gJ' . .',qL., - ',g' . 7 € 2..# .¢ €.*2_ ._, . " '. . ",=4 ,", . ,, -. ="", 4.' -, % " -. '. 8, . .".

B. SCOPE . <

The objective of this study is to design and implement software for automatic doc-

ument generator supporting the Turkish alphabet. This software is to be fbr general

purpose so that it can be used in different bureaus that requirc various Form o1 dOLLI-

ments. Since the needs for different bureaus are almost identical and the only thim, that

differs is the forms of documents , it should allow the user to define his own templates -

easily. The software should remain the same, but form definitions that meet user needs

should be easy to prepare. The software should be compatible with the computer

hardware and printers used in the Turkish Navy.

C. ORGANIZATION -)

This study consists of five main chapters followed by conclusions and recommen-

dations. The first chapter provides a brief introduction by defining the research objec-

tives and its associated scope of effort, outline and organization of this thesis. Chapter
.

II presents the system overview and objectives. The user requirements, overall design

considerations, hardware requirements, and program components are also presented in

this chapter. Design and implementation of the program will be discussed in Chapter

III. The implementation of extra characters on the screen and printer will be presented

in Chapter IV. Using the document generator is presented in Chapter V. This thesis

concludes in Chapter VI by stating the conclusions and recommendations inferred by

this study. The Turkish alphabet is presented in Appendix A. A user manual is pre-

sented in Appendix B. Appendix C will contain the program listing. Example template

definition and program output document will be presented in Appendix D. -.

1

,. .,

... .. '. . - . .-" - --" . - . "" "' "- "-" . .~ . . ' " '-""" .-.,-.- .,-: , -?-i J %'.%I% *., , *:. .% -';,Im , ,.- IN - m~l ,+'. ,,, . . . ~ -.' .I : . - - "t -+. ." " " + T

"A,..

[I. SYSTEIM OVERVIEW AND OBJECTIVES

A. INTRODUCTION ,%, ,

This chapter consists of three sections : system overview, system objectives, pro-
gram considerations, hardware requirements and program components.

System design is the process of planning a new system or one to replace or comple-

ment the existing system. But before this can be done, the system must thoroughly be
understood and the following things must be taken into considerations. W ro will make

use of the system? What will the system do? How is it operated? What are the user '-

requirements? How portable will it be? Will it be suitable for existing hardware ?

B. SYSTEM OVERVIEW AND USER REQUIREMENTS
This section presents a system overview providing a more complete understanding

of what will be required. This will help explain how the software to be developed can

be designed to best satisfy the user reqirements.

Each destroyer has a bureau where correspondence is performed and documents are
prepared. Generally one petty officer and one seaman are assigned to perform this job.
Typewriters are the only equipments used to fulfill these tasks. Each ship has its own
preprinted document forms and reports. The personnel assigned to ship administrative ,
offices are in charge of filling out documents submitted by related department personnel

and delivering them to the appropriate places. Both difficulty in supplying preprinted

forms and ease of mistyping make the bureau's task harder. Additionally, one copy ,

along with the records of incoming and outgoing documents must be retained. There

are two reference values to access the document or find the document stored in note-

books: reference by date and reference by ddcument number (which is unique). The
document number consists of three letters which indicates the class of document and the
order number within the class of document and last two digit of the current year.

In order to answer the question 'who' , we must take the seamen into consideration. %!

In other words we should assume that the system will be used by an illiterate user corn- ,
munity. No computer knowledge should be retuiied. A

The system should respond to the user requirements. It should provide the follow-

ing properties.

1. Users should be able to fii out documents as described in the template definition.
They should not be allowed to change the form of the document.

3

%A~

2. The system should meet the requirements of different forms. It should be easy for
users to define new forms.

3. The system should be user friendly therefore easy for training personnel.

4. It should also provide a 'Small Turkish Word Processor' property. In other words
it should allow the user to edit something without format.

5. Records of inconung and outgoing documents must be provided within the system.

6. It should store the documents requested by the user.

7. It should provide an ability to browse documents. The documents stored in data-
base can be browsed but not changed.

C. OVERALL DESIGN CONSIDERATIONS ?

The following assumptions have been made in the design of this project.

I. No user knowledge of computers is required. User will be responsible for filling
predefined spaces on screen as in form of document. The program will prevent the
user from overwriting on non-fillable fields on the form of document.

2. There will not be any limit for the number of document forms to be used. Tem-

plates should be easy to define.

3. Since no user knowledge is required, program should be user friendly as much as
possible.

4. The most significant assumption is that all template definitions will be entered
correctly. Program will not check the templates. It will assume they were entered
correctly.

5. The key to database search is by the uiocument number which is unique. It is as-
sumed that keywords to the database will be entered correctly.

D. HARDWARE REQUIREMENTS A-

In order to make us. of this program, the following hardware requirements should
be met bv the machine on which this program is running. I mainly focused on IBM
personal computers and its compatibles. Following hardware components must exist

on the system in addition to the system itself.

1. The machine on which this program is running has to have a fixed disk in order to
store documents in the database.

2. To meet one of the user requirements which is usage of extra characters in the
Turkish alphabet, the system has to have either a Color Graphics Adapter or En-
hanced Graphics Adapter. These conditions will be checked by the program during-
the installation process. If these requirements are not met by the system, program
will exit by prompting user.

3. The extra character set in the Turkish alphabet to be printed is designed with re-
spect to dot matrix printer. Since there is no way to check printer type. program
will assume that an appropriate printer is attached to the syvstem.

Z V

- . .

No further hardware components are required.

E. PROGRAM COMPONENTS

The program consists of seven modules. Modules have been determined accordingi

to the meaning of the task performed. The program modules and the files related tu

them are listed below. The detailed explanation will be presented in Chapter Il1. The

program consists of following modules.

1. Database Module

2. Editor Module

3. Template Module

4. User Interface Module

5. System Functions Module I

6. Printer Routines Module

7. EGA Character Generator Module

S. CGA Character Generator Module I
9. Main module

iO. Linked List Abstract Data Type

11. Double Linked List Abstract Data Type

-k

,I'

..

'p

'::

.1

5"

-J .74 . -Jb -- -. -

)5,

III. DESIGN AND IMPLEMENTATION

A. INTRODUCTION

There are several phases to software design. The purpose should not be rnerelv to

meet the user requirements. In the design of the software, software engineering concepts

should be taken into consideration. These concepts are modularity, abstraction,

reusabilty and information hiding. Especially in big projects, application of these con-

cepts makes the software easy to construct, to maintain and test. I,,

The choice of the programming language is also a major factor in achieving the goal.

I chose the C language to implement this program. The programs in this thesis have

been written in the C language by using a TURBO C compiler [Ref. 1]. The features

offered by the C language made it easier to apply the concepts stated above. Although

this is not a big project, it attempts to use these concepts by taking advantage of the

features offered by the C language.

In this chapter, I will explain how this program was designed and implemented un-

der the light of these concepts. This chapter will provide explanations on design and

implementation of the program, reusabilty anca portabilty issues, and the program mod-

ules.

B. OVERALL PROGRAM DESIGN CONSIDERATIONS

In the design of this program, I took a top-down design approach. The main tasks %

required to meet the user requirements led me the modules of the program. Once the

program is modularized then it is easy to construct the entire program by stepwise re-

finement method. Stepwise refinement helps us to easily apply the process of abstraction ,,

[Ref. 2: p 1053-10581. Well modularized program also helps us to easily apply the

process of abstraction [Ref. 3: p 1-43], information hiding [Ref. 4: p 339-34I-1.

I constructed the program modules according to the tasks to be performed. By us-

ing C language's feature, each module has been desiened and compiled separately.

Then, each module has been integrated to other modules after completion and testing

of separate modules, by using structured programming and the stepwise refinement

technique. Overall program construction, together with the module, is shown in Figure

1. This program consists of the following program modules.

1. TEMPLATE.C: Template generator routine.

6

%~ V..- % % ~'- .. 5 5

!- -l - .

II 1 I

h

Figure 1. Prograii Contponents

2. EDTOR.C: Editor module.

3. USERINT.C: User in~terf'ace module.

4. DBASE.C: Database module.

5. PRINTER.C: Printer module that contains printer related functions.

6.. ,IY.MAIN.C: lain module.

7rnAr

-74rw _V

The main decision in the design of the modules is to provide functional interface

among the modules. To hide the internal structure of each module, therefore to apply

information hiding principle, modules are interfaced by means of predetermined function

calls and overall design assunptions. Another design decision is the visibility of' the p

program buffers among the modules.

In addition to program modules listed, there are four other modules. These are

1. SYSTEM.C: Contains system dependent functions

2. DLLADT.C: Doubly linked list abstract data type.

3. LLADT.C: Linked list abstract data type that is used by database program module.

4. EGA.C: Memory resident program that creates extra characters in the Turkish al-
phabet for EGA.

5. CGA.C: Memory resident program that creates extra characters in the Turkish al-
phabet for CGA.

From the portabilty point of view, I collected all hardware and operating system

dependent functions in a separate module. When the program is ported, all functions

in this module should be replaced with the appropriate ones. The second module, doubly

linked list abstract data type, is the general purpose doubly linked list abstract data type.

It is designed so that it is totally reusable. This is also an example of information " ,ding,

abstraction and resuable program module. The portabilty and reusabilty issues will be

presented later in this chapter. The last two modules are totally independent from the

program. These modules are themselves independent programs which handles character

generation on CGA and EGA. Since these programs contain TSR instructions, they

have to be independent programs. These are compiled and run outside of integrated de-

velopment environment.

C. PROGRAMS IN THIS PROJECT
In this section, program modules are explained separately. Each program module

will be described functionally and together with its own structure. The complete source

program and make file is presented in Appendix C.

1. TEMPLATE.C:

This module contains all function definitions that are related to template gen-

eration. It provides functional interface to other modules on the data structure chosen.

Data structure to hold information is doubly linked list and all operations on data

structure and needed by other modules are defined as a function. Therefore other .

modules are not dependent on the data structure used within this module. Since the

template definition for each document form is a set of fields, each node of linked list

holds the information about one field on the Form. This module performs all operations

on data structure by using DLLADT.C module. This module is a general purpose

doubly linked list abstract data type. Module TEMIPLATE.C is not required to know.

the internal data structure of' this module. It only sends a pointer to the data to be in-

serted into linked list. The implementation details 'or DLLAD-.C will be explained

later. Figure 2 shows the general data structure for the template generator module.

N-

0

:..

9. *

%,.~ ,'

m ,',,,'-, -.. . -,: ,w . . . M.)li

I
211

. N.

F~i~t Field Field Field
InoInfo G s Info Sa

- -

Head _ f

Curr _ ----- " "

ILI

*1 - 0

.1

Since creation of the extra characters in the Turkish alphabet requires graphics

mode for color graphics adapter and text mode for enhanced graphics adapter, my design

decision is to use only one video page for both video modes. Throughout the program

the IBM PC default video page which is zero has been used. Instead of using scroll up

and down functions on the screen, I used an IBM mainframe XEDIT-like editor with

defined keys. When new page is requested by user, screen is cleared and a new page is

written. This page swapping operation is handled by template generator routine. Since

all template definitions for each document format are defined with respect to coordinates

on the page, functions that responds to the requests to these coordinates from other

module hide this fact and returns the coordinate values as if they are defined with respect

to screen.

When requested by main module, this module converts all information in the

data structure to ASCII text file format. text file format and holds them in a global

buffer. This buffer is also visible to other related modules.

Which template to be loaded is determined by the user interface module and

requested from this module by means of the order number of template in file. As will

be explained in user manual, each template definition must start with a header line

whose first character is '#. When the user requests to fill out any document, all docu-

ment definitions are displayed by reading the template file and seeking every line begin-

ning with '#' character. Then the user is asked to enter the number of the document

form and template definition for the requested form is read into the data structure with

respect to this number. According to the number of the template definition entered, it

displays the document form and then answers requests from other modules by providing

a functional interface to the data structure.

2. EDITOR.C:

This module is a small editor. It consists of two functions. Function getreply()

performs editing operations on each field of the form. This function gets the address of

the message and reply field and the coordinates for those fields. It allows the user to edit

each field by using defined keys. In case it is asked to edit an already edited field, first

it copies everything from the address sent into its own buffer, clears everything in ori-

ginal address then performs editing operations on this buffer. Before exiting the current

field, it copies everything into original buffer whose address is sent as a parameter to the

function. It does not allow the user to overwrite to the uneditabic part of the fields on

the screen. When the user is trying to overwrite to undesirable field or to use undefined

0
% Z.II

keys, it warns the user by beeping. Defined keys and the explanation on how to use the
editor will be presented in the user manual in Appendix B.

This function also performs one more task. It interprets the keys assigned for
extra characters in the Turkish alphabet. The keyboard interpreter routine is embedded
in this function. It interprets the defined keys for editor and combination of ALT keys
assigned for extra characters.

The second function that takes place within this function is edit-page(). It
performs operations for editing the entire page. It determines the next step according
to a return code from function getreply(. This way it calls approppriate functions from
template generator module. Return codes from function getreply() are the keys which

cause an end to editing each field. The user is allowed to jump back and forth among
the fields via up and down arrow keys or he may request a change to the video page.
Function edit_page() determines where to go according to these return codes. It is in-
yoked by the main module. It gets everything it needs by means of appropriate function

calls from the template generator module.

3. DBASE.C:
This module performs operations in order to store documents requested by user.

In order to access documents in database, an index sequential access method has been

used.

The main assumption for this module is that the buffer that holds document in
text form is visible to this module. In the implementation, each text to be stored is
treated as a big string. It assumes that it terminates with null character which is the
indication of the end of the string in C language. To store or retrieve any document
from database, a global buffer is used. The files related to this module are shown below.

1. DBASE.FIL: Data base file. It is used to store documents.

2. INDEX.FIL: File that is used to keep keywords for database access.

3. TEMPLATEFIL: File in which template definitions take place.

The key to database is a unique document number. When any document is

saved, a keyword is entered by the user. The user interface module prompts the user to
enter the keyvword, gets the entry and stores it in a global buffer assigned for keyword.
This buffer is known by the database module. The database module gets the keyword

from the buffer and inserts it into a linked list which is data structure for holding
keywords and index for each record. An index value for each record is the position in
the linked list. When a document is requested, keyword is searched in the linked list. if

%

12

it is found according to position in the linked list, index sequential access is applied to

the database file and the requested document is copied into a glcbal buffer. The data

structure is shown in Figure 3.

When the program is lirst run. keywords and implicit indcx values are read into

the the data structure. During the execution of the program, all additions and deletions

are performed on the linked list. When the program terminates, the last position of the

linked list is written back into the index file in the same order in the linked list.

The appearance of the database file is a sequence of documents with a decimal

number which indicates the size of each document and the document following it. The

recently stored document is appended to the end of database file and the keyword asso-

ciated with it is inserted at the end of the linked ist.

4. USERINT.C:

All the user interface part of this program is performed by this module. It

contains the function definitions for operations that require input or output. By using

the field editing function, it allows the user to edit input and at the same time it permits

the extra characters in the Turkish alphabet to be entered. All input operations that are

limited to a certain size of characters are indicated by color and the input is checked by

the field editor function. The simple error handling routine also takes place within this

module. This is a general purpose error handling routine. When it is invoked by

modules, this routine warns the user according to an error code determined by the calling

module.

5. SYSTEM.C:

This module contains all hardware and operating systen dependent function

definitions. From the portability point of view, all system dependent function calls take

place within this module. BIOS video functions have been chosen so that they will op-

crate both in video mode and text mode. All function and related service numbers for

BIOS routines are defined in header files. Keyboard scan codes are defined within

KEYDEF.H, BIOS functions and services are defined in BLOSLIB.H-I file. These two

files are included in SYSTEM.H file.

6. PRINTER.C:

This module contains all function definitions for printer related functions.

When printing any document is requested, it filters the text, seekz tbhe A.SCII c-,es as-

signed for extra characters in the Turkish alphabet. If any special character is trapped,

it calls the appropriate function that prints the font associated with that characters.

13

~ 55 %~%.. *.~ *. *5.~ .'-. ~ .

fS

index list

F~bfl~l-b~000a
LJL~JL YiJ L-

ooo ..siel ouentIy I -ey2 0 ey a k i en ,oc, men.

Database file

'I

Figure 3. Data Structure for Dbase.C Program Module

Therc are two lbnctions that are known by other modules. These are .

p.,rint/,,'c (: and !',itj7lc, I he design assumption for these module is that when any

01k

%%. %

document is requested to be printed, this module knows that it is stored in a global

buffer. As in the database module, each document in the buffer is treated as a big string. I
So in order to print a page which is either already edited or retreived from the database

to browse , unction printpage(/ gets the characters from buffer, prints them out by

filtering the ASCII codes for special characters.

Function prinjfile() is designed in order to be able to print the file which is a,

used to keep record of incoming documents. This function performs the same oper-

ations by filtering and printing out special characters. The only difference is that this

function gets the characters from file until the end of file rather than encountering the

null character.

The user is allowed to print out any document up to eight copies. The number

of copies requested is entered interactively by user. By considering that the user may

want to fill out any document,wanting to store rather than printing it out, zero will im-

ply no printer output. Printing a file is limited to only one copy. Design of the special

characters will be explained in Chapter IV.

7. MYMAIN.C:

This module constitutes the top of the program structure. It is the mirror of

how the entire program is structured. In top-down design approach, this is the first step

I took.

This module contains only function calls rather than functions themselves. It

knows the tasks performed by each module and interfaces modules according to logical

order that is neccessary to perform the task.

8. DLADT.C:

This module is a general purpose double linked list implementation. Imple-

mentation details are hidden from application side. The user of the module has to pro-

vide some functions neccessary to apply abstract data type. The application side does

not have to know the internal structure of the module. The functions that will be pro-

vided by application side are the comparison functions and appropriate requests from

module.

The main idea in the design of this general purpose abstract data type is to have

totaly reusable module. It is implemented by taking advantage of the C language's

features. It is written by using C language's generic pointer feature. The detailed ex-

planation on the implementation of the module has been given along the source program

as the comment. The data structure for double linked list is shown in Figure 4.

o

• "I

Double linked list abstract data type

tail

~~Pointer to double linked list .

~Ar.plication side-

Figure 4,. Data S1tructureI for" Douhle1 Liniked List Abstract Data1 Type
16r

..

% "

.0

9. LLADT.C:
This module is a general purpose linked list abstract data type implementation.

It has been implemented by using C language's generic pointer feature. It is a totally
reusable module. In this project, it is used by Dbase.C program module to hold

keywords in order to implement index sequential access method for database access..
The data structure for this module is shown in Fi2ure 5.

10. EGACHR.C:
This program is separate from the program modules defined above. It is de-

signed to create the extra characters in Turkish alphabet on the Enhanced Graphics

Adapter. It is a memory resident program and it is run seperately from the main pro-

gram. The detailed explanation on the implementation of extra characters will be pre-

sented in Chapter IV.

11. CGACHR.C:
This is also memory resident program and designed to create the extra charac-

ters on the Color Graphics Adapters. The detailed explanation on how to implement

these extra characters will be presented in Chapter IV.

D. PORTABILITY AND REUSABILITY ISSUES
This particular application program is system dependent. In other words it is not

portable to other systems. However, throughout this study, in order to make the pro-

gram easy to port to other systems, in the design of the program these issues have been

taken into consideration. PRPORT.H project portability header file is used for these

purposes. Within this file, all portability issues considered throughout the project are

defined. When this program is ported this file should be updated.

From portability point of view, designer must think about the following things. C
compiler dependency and system dependency. This program has been written in
TURBO C. All built-in language functions used within the program are defined using.

ANSI standards and provided by all other C language compilers. None of the functions .

is unique to TURBO C. Ilowever. some reserved words that are not provided by other

compilers such as 'void' take place in the PRPORT.[1 file and are replaced with apprc-

priate ones according to defined compiler in the same file.

The second thing considered for the portability is the system dependency of the

program. This dependency may show up in two different stiuations. First the repre-
sentation of the data types in the language differs from system to system. The second

is the presence of the system dependent function calls within the program. To eliminate

17 -

L1!n:-od 11s" CDtr.ct data3 typa

tall
cur-

head --

A

.I

,.1"

Pointer to linked list

Applicctlon side %

Figure 5. Data Structure for Linked List Abstract Data Type

the Imrnct oF the represcntation of data types, I dchned my own data types within the

P "0 RF. II hcader hi' b ta kin , advanta C of C Iangeun 2e s typedel ICaturc. In ace

procrin. I uscd my own data ty,.pe everywhere that is dependent upon the representation

of data types on machine. And by forcing the compiler type casting on mv own data

t::pc. I ainmd to eliminate the impact of the representation of the data type on difflecent

machincs. Beforc this program is ported to another system, uscr dcfincd data typcs must

%"

be redefined according to the new system. There is no need to make change within the

program.

This program contains many BIOS routine calls. These calls are specific to IBM

PC and compatibles. I collected all BIOS and OS dependent functions within a single

program component namely SYSTEM.C. Before the program is ported, all functions

that take place within the SYSTEM.C program component must be replaced with tile

appropriate ones so that function name and the order of the parameters will remain the

same.
,-. .,.=

A.-:'

A?%

0"''
Vt

-

19 '1

K'"%

5,,t

%

IV. IMPLEMENTATION OF SPECIAL CHARACTERS IN TURKISH

APHABET

A. TO CREATE SPECIAL CHARACTERS ON SCREEN
Programmers writing for the monochrome display adapter(MDA) and the color

graphics adapter (CGA) are stuck with the character sets provided in those board's

ROMs. if you want a different character set, for instance as APL users do, you have
to replace the ROM. But there are various commercially available adapters today. On
the Enhanced Graphic Adapter things are different. Fonts are "soft", meaning that al-
though the ROM character generator is used by default, it can be replaced by a char-

acter set of our choosing. In fact, EGA can support four different character sets. v
In this section, we will examine how to design our own custom fonts. For different

adapters creation of special characters will be discussed.
Only the monochrome adapter cannot display characters of progranmer's own de-

sign. The color card allows 128 user defined characters. PC jr allows 256. EGA allows

1024, of which 512 may be on line at once. On the color graphic adapter, in text modes

character sets in ROM are used by the system. There is no way to change this or replace

by new fonts. But CGA allows user to define own custom character sets on graphics
modes. In graphics mode, ROM contains data to draw first only 128 characters in the

ASCII set (numbers 0-127). The second 128 characters can be redefined for our own
purposes. System finds the table containing data drawing graphics characters via inter-

rupt vector IF [Ref. 5: p.l-911. _
Characters on graphics card and PC jr's are designed within a box that is 8x8 pixels.

Eight bytes hold the data for each character. Each byte holds the settingz for a row of

pixels, starting with the top row, and the high bit corresponds to the leftmost pixel of

the row. When the bit equals I, the pixel shows. To design a character, the bit patterns
for eight bytes must be determined and placed in sequence in memory pointed by inter-

rupt vector IF. Figure 6 shows how extra characters in the Turkish alphabet are de-

signed for CGA. To place user defined character table in memory, interrupt vector IF
must be redirected so that INT IF will point to the user defined new character table. 7._
This can be achieved either by some built-in function calls provided by some high level

languaue or writing assembly lanauaze routine. In case that this is done with assenbly

langzuage, we also need to make our table memory resident. But if this is implemented

I t
20

aX

in any high level language (in this study the C language), the new table can be held in

an array' and INT vector can be set to point to the array that contains the user defined

character set data.

In my approach, I implemented the character generator programs in the C language.
These are memory resident programs and install our own characters. We need to deline

only 12 extra characters in the Turkish alphabet. Therefore, first I copied system de- .' ,

fined graphics character table into array, then my own character table into an array.

Before doing this we need to save the old interrupt vector value so that when program

terminates we can have the system resume the original state. The next step is to change -'-

the interrupt vector so that it will point the array holding the character table data. But

there is one significant point here. As stated above there is no way for us to use these 6-

characters in normal text mode. Therefore we need to change the video mode. In this

particular example for IBM PC or compatibles, it should be set to video mode 6 which

is black and white mode. In this program I utilized the built-in Turbo C language

functions setvecti(, getvect,') to get old interrupt vector value and to change the inter-

rupt vector to the user defined character table. Since the user defined character table

will be held in an array and it will be in memory during the execution of program, I did

not make this routine memory, resident.

The Enhanced Graphics Adapter is much more complicated and much more versa-

tile. When a text mode is initialized, one of the two character sets (8x8 or 8x14) is

copied from EGA ROM onto bit map 2 of the video buffer. This part of the buffer is

treated as if it were broken into blocks, and the standard character set is placed in block

0. Providing me EGA adequate memory, three more blocks of character data may be set

up. The size of the block depends on the number of scan lines used in the character.

Characters that are Sx8 need 8 times 256, or 2048 bytes. When more than one block

of characters is enabled, bit 3 of the attribute byte determines which block will be used.

Enhanced Graphics Adapter gives the user the ability to define his own character

set. New character set can be placed at whatever position user chose within any block.

And even if it over-writes the standard character set, it can be replaced at any time From,

ROM data.

The most beautiful part of the things offered by EGA is that it gives the ability to

replace the standard character set in text mode with one of chosen by the user. The

EGA has BIOS support for the loading of an alternate character set through interrupt

lOh, function 1 lh, subfunction 0 [Ref. 6: p 4-1). We can make a call to this function

21 "

x ~ ~ ~ ~ x 430Y 0X C C Q C C ox C C 0 7 C ox 0 I

Ii 1 ° 0I 10101

i !0 10
7% lo __ 1r 0 0100

Figure 6. Memory and Screen Representation of Character for CGA

with ES:BP pointing to table containing our own font in a format that will be explained

below. DX set to the ASCII ordinalitv of the first character of our character set, CX set

to the number of' the characters in user defined character set (maximum 256), BIt set

to the number of the bytes per character, and BL set to the block to load. These pa-

rameters provide the BIOS with suflicient inf'ormation to load the new fonts defined by

the user.

22.

Figure 7 contains data and the way that extra characters in Turkish alphabet are

plotted. This figures assumes an enhanced color display in 25-line mode, in which each

character is 14 scan lines high and 8 pixels wide. For EGA character box is limited 8

pixels wide but can be defined up to 32 scan lines high.

B. PRINTING SPECIAL CHARACTERS ON PRINTER

In this section, I will explain how we can print out our own characters on the
printer. First of all I would like to emphasize that by saying printers, I mean comrnmer-

cially available dot matrix printers. In this research I did not take bit map systems and,

therefore, some printers called image writers into consideration.

There are hundreds of printers available today. Although most of the commercially
available printers offer various features, for this specific application area, we will not be

using most of the features offered. The need for a different character set is partially met

by those features. Most of the dot matrix printers provide user some character set rather

than standard character set. These characters can be utilized by sending appropriate

printer commands. For this application, we could make use of some of these characters

namely international character set, provided by printer manifacturers. But this would

not meet our needs for extra characters in Turkish alphabet. Therefore we have to find

a way to print out some user defined characters which are not available in the printers

ROM. This goal can be achieved by exploiting one of the features provided by printers.

To print out characters which are not available in printers ROM, I took the fol-
lowing steps. First, dot matrix printers offer the ability to print graphics. This shows

us anything can be printed as defined by user. Before starting to explain the way I print

out my own characters, we need to take a closer look at where dots are printed and how
we can control them. When any character is sent to printer, it prints that character us-

ing the dot pattern stored in its memory. In case that we want to print a pattern of dots

that the printer does not have in its memory., we should control then the individual dots

that are printed. Printer head usually consists of nine pins stacked one above the other.
The print head therefore can print the colunmis of up to nine dots at a time. As plotted

in creation of characters on screen section, if we plot the characters that will be printed

we can print them column by column. Since print head will be printing coluni by col-

umn, we need to first send the byte that defines first column of character box. When

we draw our own characters, each strike of pins on the print head will be represented

bv l's. This technique is called dot graphics. In dot graphics, the line length and dot %
spacings are not fixed. We should tell the printer three things. First, which pins to print

23

-

' . , ". , _V .- __'I, %_ - -N. -. Y 10.~ ~ ~ * * * %~%''.*

'05

-J

Yr
1 I -I

'
I I -

-I' r -f , U

o; 0 1 I / .Ca "l ;--I t" i .'

Figure 7. M\emory and Screen Representation of Character for EGA

in each column, second, how closely to space the columns, and third how manv columns

there will bc in the line. To tell all these things, appropriate printer commands, which

arc actually ESCAPE sequences, must be sent to the printer.

After having briefly explained how we can use printers to print out some characters

that are not availablc in printers' memory, now I can explain the approach taken in this

24

program. Figure 8 shows how extra characters in Turkish alphabet are plotted for

printer.

First step is to define characters on a xS matrix. Second step is to calculate the values

corresponding each colunm either in hex or decimal. There are two printer graphics

mode: line and block graphics mode. I picked the line graphic mode. Since each char-

acter is 8x8 dot matrix (therefore it will be 8 dots wide), I defined line length as 8 in line

graphics mode. ESC sequences to tell printer these should contain the following values,0 N6a

number of dots per inch, line length. By sending the following command to the printer, i. ,.

we can tell the printer that leading 8 bytes will be printed column by column, in other "

words they will not be interpreted as regular ASCII characters.

ESC K' nI n2

If we interpret this, ESC 'K' means ' do not interpret the leading bytes as ASCII

characters, and the line length is nl + (256"n2) [Ref. 7: p.6-47. This is a general

purpose command. Since we are going to use it to print our own characters the line

length should be eight. If the hexadecimal or decimal values which corresponds the

column values of new characters are sent to printer after following escape sequence, the

character that is defined by user will be printed. After line length bytes printer resumes

its previous mode. Since characters are printed in fixed dot density, even though letter

qua'ity is set to anything, they will be printed in fixed dot density defined by user. For

this application program I picked the dot density as sixty dots per inch and regular

characters will be printed standard mode. To make sure that printer is operated in

standard mode, program sends the ESC sequence that sets the printer to standard mode.

Telling printer which character will be printed as special character is under program re-

sponsibility and the printer module handles everything.

2

N

, ,-.S

1V
*1IIPD.

-a - .
- -h V.

V
I'.

I.

L
N

//

K
", -~K-~

~§itiLL
t ~ "~ ~'
I 2

Liz. ~;I1 I p~.

-t AI,£42. ~'

It:.
S

Figure & Character Representation for Printer S

K.
w..

4-

0

26

'p

0

V. USING THE DOCUMENT GENERATOR

In Chapter III, the design and implementation details of this program have been

disc.ussed. In this chapter, what we have designed will be presented. This chapter briefly
explains how to use the document generator software from user's point of view. The

detailed explanation is presented in Appendix B as User Manual.

The entire project tends to use microcomputers on board for tasks performed by

ship bureaus. It allows the user to fill out document forms and to store them in a da-

tabase, including the ability of using extra characters in the Turkish alphabet. All op-

erations performed by this software appear in the main menu. The user can select one S

of these operations. These operations are:

1. Preparing any document.

2. Browsing any document from database.
.i3. Entering incoming document log. ~

4. Printing incoming document log file.

5. Quit

This program tends to be user friendly. User is prompted for each step to be taken. 0

All operations performed by this program take place within main menu. Main menu is

the starting and ending point of each operation displayed in main menu. The program

will be executed until the user enters the Quit option.

In order to prepare any document, option one should be selected. User will be.0

prompted to enter appropriate form number after program displayed all templates that

exist in TEMPLATE.FIL. If there is more than one screen full template definition,

program automatically provides user to view one screen full at a time. The form that
corresponds to the number entered by user will be displayed and the editing session will

start. User will be allowed to edit each field displayed on screen and to go back and

forth among the field. User will not be allowed to overwrite non tillable fields during

the editing session. He will be warned by sound in any attempt at overwriting. After e

ci.-npletion of editing session, user will be prompted if he wants to print it out. If he

wants to print out, program will print out the currently edited document with as many

copies as requested. Zero implies no printer output. Next step is to get user request if

he wantz 'o store it in database. If it is requested to store it in database, after getting.

27 a N

TIl

the document id for document (which is key to database access), it will be stored in da-

tabase file and program will go back to main menu for next operations.

Another operation is to browse any document previously edited and stored in data-

base. When this option is requested, user will be prompted to enter document id asso-

ciated with request. Program will access database file according to keyword entered by

user and retrieve the document into program buffer then display it one screen full at a

time. User will be allowed to print the document browsed and he will be promted for

print option as in option one. Zero will imply no printer output and program will go

back to main menu for next operations.

There is no feature for retyping all incoming documents. Program will only provide

a mechanism to keep records of all incoming documents. In option three, user can enter

all information about incoming document. He is allowed to edit. The user input then 0

will be appended to DOCLOG.FIL.

The fifth option provides user to print all incoming document information entered

by option three. User will not be promtped for the number of copies. Program will print

only one copy of the DOCLOG.FIL.
Program terminates after option five is selected. All document id's entered during

the execution of program will be updated before program terminates.

The detailed explanation on operations performed by this program will be presented

in Appendix B, User Manual.

a,.

*%I
28 "--.%

I

VI. CONCLUSIONS AND RECOMMINENDATIONS

The objective of this study is to design and implement a software for an automatic wdo4

document generator supporting extra characters in the Turkish alphabet. In this study,

1 mainly focused on IBM personal computers to create our own characters. Being able p

to use the Turkish alphabet on computers was only one part of the project. There were

several goals in the design and implementation of the program. The first part is to be

able to use extra characters in the Turkish alphabet. This part includes two different

hardware components. The system on which program is running and the printers to be

used to print characters. This part of the problem is totally hardware dependent. •

Throughout this study, I focused on IBM personal computers to create extra characters

in the Turkish alphabet on the screen. For printers I took the dot matrix printers. Since

the dot matrix printers vary among themselves according to manifacturers, I considered

three main types of dot matrix printers. These three types of printers are commercially

available and widely used, respectively EPSON, IBM proprinter, OKIDATA dot matrix

printers.

To expand this project, the hardware dependency of creating extra characters on

screen can be reduced by expanding this study to other systems that are available today. S

The second part of the problem is to meet user needs to generate and process doc-

uments. This program is designed to generate documents with only a single page length.

This program can be developed so that there will be no limitation for the length of the

document format. To process documents, to store them in database and to meet user

needs, in database implementation of this project, the index sequential access method

has been used to retrieve any document from database. To expand this project, data-

base routine should be implemented by using a B-tree to achieve better disk access to the

database.

2-

APPENDIX A. T1'IRhISII API1ABET

a b c C I e f g h 1 j j k 1

A B C C D PG GIll I J K L

in n o o u r s s t u V y z

N 0 0 P R S U U V Y

30a

-

.%

a.,.

APPENDIX B. USER MANUAL

A. INTRODUCTION
This program attempts to provide all operations performed by ship administrative

offices to generate and process documents. It is designed so that it will be user friendly

and interactive program. Basic features provided by the program are displayed in the

main menu. The main menu is the starting and ending point of each operation until

Quit option is entered by user. User will be prompted during the execution of each op-

tion on the main menu according to logical sequence of the operation performed in real

time. S

B. REQUIREMENTS

This program is designed for IBM personal computers and DOS environment. The

following conditions must be checked before the execution of program:

1. All program files must be in the same directory. Program files and their de- ",

scriptions are as follows.
a. YAZIBURO.EXE: Main executable program file. This is the file to be run.

b. TEMPLATE.FIL: File in which all template and form definitions take place.
This file must exist in order to be able to fill out some documents. The absence .
of this file implies that there is no template definition for proram to display."

c. INDEX.FIL: This file is used to keep kevwords for database access. It does
not have to exist when program is first run. However, it must exist along with
DBASE.FIL if there is any document edited and stored in database. The pres-
ence of either INDEX.FIL or DBASE.FIL will imply that there was at least one".
document stored in database file and one of these files is missing.

d. DBASE.FIL: This file is main database file and it is used to store all documents
requested to be stored.

e. EGACHR.EXE: Executable file that creates extra characters in the Turkish al-
phabet. It can be used independently in order to prepare new templates by us-
ing any word processor. It will be installed by program when it is used for
document generator purposes.

f. CGACI-IR.EXE: Executable program that creates extra characters in the '-

Turkish alphabet. Its usage is the same with EGACHR.EXE.

2. Maintenance of the program files is under user responsibilty.

3. System should be equipped with either CGA or EGA in order to be able to display
extra characters in the Turkish alphabet. Program will automatically terminate if'
these conditions are not met by the system.

31

- dsp.

4. All template definitions must be entered correctly. Detailed explanation on how
to prepare template will be presented later.

5. Printer attached to the system should be a dot matrix printer.

C. GETTING STARTED

The complete list of the program files has been presented in section B. The execut-

able program name (YAZIBURO) must be entered in DOS command line in order to
run this program. Main menu will be displayed as soon as program is run. Main menu
contains all operations performed by this program. User can choose the operation from
main by simply entering the number associated with the request after the program , -
prompt. The logical sequence of the events to perform any operation on main menu are

as follows: S
1. PREPARING ANY DOCUMENT

a. Choose the document form and enter the choice after program prompt.

b. The form of document will be displayed.

c. Fill out document. S

d. Print it out. If the printer output is not requested, zero will imply no printer
output.

e. Do you want to save it? If the answer is 'yes', enter the keyword for the docu-
ment to be saved after program prompt.

f. Go back to main menu.

2. BROWSING ANY DOCUMENT FROM DATABASE

a. Enter the kevword associated with the document.

b. If attempt is succesful, browse the document.
c. User may want to obtain print out. He will be prompted to enter the number

of copies to be printed. Zero will imply no printer output as in option one.

d. Go back to main menu.

3. ENTERING INCOMING DOCUMENT LOG.

a. Prompts the user by displaying the fields in incoming document log.

b. Enter the inFormatl k about the incoming document. 'Ii
c. After hitting the RETURN key, go back to main menu.

4. PRINTING INCOMING DOCUMENT LOG

a. When option four is selected, program will automatically generate one copy of
printer output of incoming document tile.

b. Go back to main menu.

32 "-

* - - . V. * r V. . . ~

,"

5. EXIT TO DOS .,

a. This option is used to terminate the execution of the program.

User will be prompted according to logical sequence of the events presented above

during- the execution of the program. Each operation will be explained in detail below.

1. ENTERING EXTRA CHARACTERS IN THE TURKISH ALPHABET

There is a one to one relation between extra characters in the Turkish alphabet

and the ones in English. In the design of this program, by taking advantage of this

similarity, extra characters in the Turkish alphabet will be entered as ALT key and the

similar letter in English combination. CAPS LOCK and the SHIFT keys on the regular

keyboard layout will function same way. *.

1. ALT-c: will display the letter €.

2. ALT-C : will display the letter Q .
3. ALT-g : will display the letter g.

4. ALT-G : will display the letter G.
5. ALT-i: will display the letter i.
6. ALT-I: will display the letteri.

7. ALT-o :will display the letter ..

8. ALT-I : will display the letter I.

9. ALT-s : will display the letter . P

10. ALT-S will display the letter 0.

91. ALT-u : will display the letter U.
12. ALT-U • will display the letter .

2. USING DOCUMENT GENERATOR
a. PREPARING DOCUMENT

Option 1 provides user to fill out any document whose definition takes place

in TEMPLATE.FIL. All templates that take place in TEMPLATE.F1-L will be dis-

played. User will be asked to enter the number of his choice. Program will automat-

ically provide a mechanism for user to view all templates available. When there are more

than one screen full template names, program will display one screen full template names

at a time. The form of the document requested by user will be displayed. Program will

automatically color the spaces to be filled out by user. Cursor will be on the first field

to filled out. Program will prevent user from overwriting on non-fillable fields of docu- ,

ment form. Cursor will automatically go to the next editable field after the user hits the

33
A,%'

,..0N

RETURN key. User is allowed to go back and forth among the fields by using delined

keys in order to correct typos.

Program defined keys and the editing 'eatures provided by program are as

Follows.

I. ESC key: Will cancel all input for the current field.

2. HOME key: Will take the cursor to the beginning of the current field

3. CTRL-END: When the combination of CTRL-.END keys is entered, it will termi-
nate the editing session.

4. DEL key: aliows deleting character at the cursor position.

5. LEFT ARROW: Moves the cursor to the left.

6. RIGHT ARROW: Moves the cursor to the right.

7. UP ARRoW: When UP ARROW key is hit, editing session of the current field
will terminate and this key will allow user to go one editable field back. If there is
no editable field to go, user will be warned by sound and cursor will stay at the
same field.

S. DOWN ARROW: will terminate the editing session for current field, and will move
the cursor to next editable field. If there is no field to go, user will be warned by
sound and cursor will stay at the same field.

9. SPACE BAR: V .1l either move cursor or make room for characters to be inserted.

10. PAGE UP: Will display the previous video page, If the current page is the first
page, user will be warned by sound and current page will remain active.

11. PAGE DOWN: Will display the next video page. If the current video page is the
last page, user will be warned by sound and current video page will remain active.

User can edit each field by using program defined keys listed above. Editor

is always in insert mode. After having filled out all necessary spaces on the form of

document, user can press CTRL-END to terminate editing session. User will be

prompted for printer request as next step. Program prompt for printer request

Howmany copy do you want = = >

Zero implies no printer output "

User will enter the number of copies ie wants to print out after the program prompt

shown above. Program will execute the user request and then prompt user if he wants

to store the currently edited document in database. If user wants to store the document
in database, he should enter the kcvxvord after program prompt. User is allowed to edit

all entries by using program defined keys presented in section 2. Program will go to

34

main menu for next operation after saving the document in database. If user requests

more than one copy of printer output.

program will print out up to maxinum eight copies by automatically providing form feed.

b. BROIJSING ANY DOCUMENT FROI D,-ITA B4SE

Program allows user to view any document previously edited and stored in

database. This can be done by selecting Option 2 from main menu. Appropriate

keyword must be entered in order to browse any document from database. User will be

asked to enter keyword for the document to be viewed. User is allowed to edit his entry

as in section two. All keys defined can be used. Program will get the document id and

retrieve the document and then display it one screen full at a time. User will be

prompted to see next page.

This operation will allow user to view rather than edit or change the con-
tents of the document. However user can print it out as many copies as he wants.

Program will prompt the user and print the document according to user request. Zero

will imply no printer output as in Option I. Program will go to main menu after per-

forming request by user.

c. ENTERING INCOMING DOCUMENT LOG

Program provides a mechanism to keep record of all incoming documents.
Since there is no use to retype all incoming documents, it basically allows user to enter

all information about incoming documents. This can be done by Option 3. When this

option is selected by user, program will display the following:

ENTER ALL INFORMA TION ABOUT THE INCOMING DOCUMENT

DOCUMENT ID FROM DATE

User will fill out the spaces as indicated above. All program defined keys can be used

to enter the information about the incoming document. It is under user responsibility
to format the entry. Program will save the entry as it was entered.

d. PRINTING INCOMING DOCUMENT LOG

Option 4 provides user to print out all informations about incoming docu-

ments. Program will print one copy of DOCLOG.FIL which holds all informations
about incoming documents entered by Option 3. User will not be prompted for the

35

I,,
.

number of the copies. Program will print only single copy of this file and then go back

to main menu.

e. EXIT TO DOS

Option 5 terminates the program and takes user back to DOS conmmand

line. Program updates the program files before it terminates.

3. HOW TO PREPARE NEW TEMPLATE
In this section, how to prepare new template will be explained. This program

will run for the template definitions already existing in Template. Fil. User can easily add

new templates to the system according to what they need. User should not forget that
program always assumes template definitions have been entered correctly. All templates

must be defined to the system as described below.

All template definitions take place in TEMPLA TE.FIL. New templates can be
added to already existing ones by using any word processor. Before starting to explain

rules on defining new template to the system, it is better to give a brief explanation on,, ,
terminology used here.

Each document form consists of fields. A field is the smallest unit on this form.

A field consists of a field message and a field reply. Field message is the string appeared

on the blank form of the document. Each entry that user will fill out constitutes a field

reply. A field can be either editable or noneditable.

The noneditable fields are the ones the user is not allowed to edit. The location of each

field is given by the coordinates with respect to page format. Each field has to have row,

column and width values associated with itself.

Figure 9 shows the components that are necessary to define any field.

In order to prepare a template the following steps should be taken. Each form
of document should be broken into fields. The components of each field must be de-

ternined. All components of a field must be appended to Template.fil according to the

following rules.

1. Each template definition must have unique name and its name must be defined
prior to field definitions. All template names must start with 'V character and inl
the first column. Program will display all template names by checking if their first
characters are i or not.

2. Each field must be entered in a single line.

3. User is allowed to put comments anywhere in the file as long as it starts with
and it starts in the first column. All lines whose first character are will be
skipped by program.

36

•',% ,,,,-€., .i ,, ,,, r :,.',2.r','.,' 'G'.-'.vg d' ."& 4"% "& Z" ,'",-'-.","& " .-. 7.'-.''-'-.'-.'' ''-''-"'-''. '-5'-''-"'-''-''-"" "'-''-''.''-' "

.0

Column m

Row

Width I

Figure 9. Field Compofients

4. The order of the field component values is very important. The order must be as
follows:

Field row cohmn width editable @ field message @

5. Field messages must begin and end with the special character'@'.

6. Field width must be deternined so that it will be large enough to hold both the field
mcssagc and the field rcply that will be entered by user when it is editable.

7. Field status can be either one or zero. One should be entered for the ones that user
is allowed to edit. Otherwise it will be zero. S

S. The order of each field is not important. It can be entered in any order. However
the order of the field components must be entered as in the example. ,

* This is a comment line.

row column t'idth editable field message %

5 50 20 1 @Date: @%
Example field definition defined according to rules above indicates a field start- 0.

ing at row 5, column 50, total width 20 characters and field message is Date: 0

This shows that field message will be displayed on specified coordinates and user will fill

out width - message length= 14 characters length space. Example template definition

and program output document arc presented in Appendix D.

37

V,...r

APPENDIX C. PROGRAM LISTINGS

Source listings of program modules are given in the Following order. Relation
among the program files can be found in MAKEFILE. The order of program listings

is according to program structure. All program files are listed after program modules.

" MAKEFILE UTILITY

" MYMAIN.C

" TEMPLATE.H

" TEMPLATE.C

" EDITOR.H

" EDITOR.C

" DBASE.C

" PRINTER.C

" SYSTEM.H

" SYSTEM.C

" DLADT.C

* LLADT.C

" EGACHR.C

" PRPORT.H

" KEYDEF.H

" MYASCII.NUM

" EPSON.DAT

" EXTRA.FNT

3'

''

#A The order to search for rules and files is specified by .SUFFIXES

FFIXES .exe .obj .c

program files and their dependencies.

mymain. obj: prport. h

template.obj: tempi'ate.h prport.h keydef.h bioslib.h

editor.obj: editor.h prport.h keydef-h bioslib.h myascii.num

userint. obj: prport. h0

dbase. obj: prport. h

printer.obj: prport.h myascii.num extra. fnt epson.dat

system.obj: system.h prport.h keydef.h bioslib.h

dladt. obj: prport. h

lladt. obj: prport. h

#h Files
FILES= system template editor mymain userint printer dbase dladt lladt

#A Object files
OBJS= system. obj template. obj editor. obj mymain.obj
userint.obj printer.obj dbase.obj dladt.obj lladt-obj

#A Libraries
LIBS= emu math$(MDL) c$(MDL)

#A Model definition is SMALL for Turbo-C
MDL = s

Imake is
#A MAKE =ndmake

#A plink isI

39i

all: Yaziburo.exe

Yaziburo. exe: $(OBJS)
tlink cOS(UIDL) $(FILES),$*,$*, $(LIBS)

c.obj :e.
toc -c -m$(MDL) $* '

clean:
del mymain.obj
del system. obj
del template. obj
del editor. obj
del printer. obj
del dbase. obj "

del userint.obj
del dladt.obj

404

MODULE: MYMAIN. C

VERSION: 1.0

AUTHOR :Metin AKINCI

DATE : 31 MAY, 1988

EXPLANATION:
Main project module.

Interfaces modules and prepares program buffers.

CHANGE LOG:

#include "prport. h"
#Ainclude <stdio. h>
#include <mem.h>

1* External Function Definitions

extern Void editpageo;
extern Void start-upo;
extern Void print..page();
extern Char *con-texto;
extern Int getrequesto;%e
extern Bool ifsave();
extern Void enterlogo;
extern Void deallocateo;
extern Void allocateo;
extern Bool loadtemplate(Int);
extern Int gettemplate();

/* Buffer pointers which are visable to other program modules *
Char *TEXTBUF;
Char *KEYWORD;

/* Define Size of Program Buffers *
#fdefine KEYSIZE 12
#fdefine BUFSIZE 3500

/* Define function prototypes *1
Void a11ocbufo);
Void deallocbufo;
Void flushbufferso;

41%

main()

Char ch;
Bool done;

/* initialize the modules /
al locbuf(;.r:

loadindex();
while (!done)

{switch (getrequest())

case 1: tempinito; /* Prepare document
if (! loadtemplate(gettemplateo))

error((Int) 2);
break;

startupo; ,
editpage();
contexto;
printpageo;
if (ifsave()

savedoco;
deallocateo;
break;

case 2: /* Browsing a document
getkey2dbo;
if (browse()
printpageo;

break;
case 3: /* Entering an incoming doc-ument*/

enterlog();
break;

case 4: printfileo; 1* Printing incoming doc file */
break;

case 5: /* Return to DOS */
don e=TRUE;
break;

default: break;

flushbuffers);

updateindexfo;
deallocbuf();

42

-oo

ALLOCBUFQ: Allocates program buffers.

TEXTBUF=(Char *)mralloc(BUSIZE);

KEYWCRD=(Char)malloc(EYSIZE);
if ((!KEYWORD) I(!TEXTBUF))

printf(" there is no enough memory. program exiting.");
exit(O);

memset(KEYWORD,' 0' ,KEYSIZE);
memset(TEXTBUF,' 0' ,BUFSIZE);

DEALLOOBUFO: Deallocates program buffers.

Void
de al1locbuf(

{0
free(KEYWQRD);
free(TEXTBUF);

.0

FLUSHBUFFERSQ: Clears program buffers.ko

Void

memset(KEYWORD,' 0' ,KEYSIZE);

memset(TEXTBUF,' 0' ,BUFSIZE);

434

*P, A$

MODULE : TEMPLATE. H

VERSION: 1.0

AUTHOR : Metin AKINCI

DATE 15 MAY, 1988

EXPLANATION:
Contains all definitions and declarations

for TEMPLATE. C Module.

CHANGE LOG:

!Ainclude "prport.h" /* program defined header files*/
#include "kpydef. h"
#include "bios lib. h"

#include <stdlib.h> /* Compiler header files.
#include <alloc. h>
#include <conio. h>
#include <stdio.h>
#include <mem.h>
#include <string. h>

0%

char * TEMPLATEFILE="template. fil";
/* define filename for templates */

typedef struct Fieldrecord

Int row; /* field start row number
Int column; /* field start column number ./
Int width; /* field width
Char *msg; /* pointer to message buffer */
Char *reply; /* pointer to reply buffer
Bool editable; /* If 1 then editable else not */

} Field;

Field *PagePtr[3]; /* Video page pointer array */
GLOBAL Int PG; /* Video page counter */

typedef char dlist; /* generic pointer to dllist */
dlist *mylist;

-'S4

01

% % % %

GLOBAL extern Char *TEXTBUF • /* pointer to buffer */

/* Function prototypes

extern Void putcur(Int,Int);
extern Void clrscrno;

extern Void ring-bell();
extern Void writea(Int,Int);

Function prototypes for DLADT.C */ ,

extern Field *dl-find(char *,Field *,int (* fieldcomp)());
extern Bool *dladd(char *, Field *,int (*fieldcomp));
extern Bool *dldelete(char *,Field *,int (* fieldcomp)());
extern char *dlalloc(;
extern Bool *dlfree(char *);
extern Field *dl next(char *);
extern Field *dl-prior(char *);
extern Field *dl-first(char *);
extern Field *dllast(char *);
extern Field *dl curr(char *); •

r'

45

%h

...

.-.j
p%

MODULE TEMPLATE. C

VERSION: 1.0

AUTHOR : Metin AKINCI

DATE : 15 FEB, 1988

EXPLANATION:
This module contains the data structure

holding template informations and provides the
other modules functional interface by hiding
the data structure. All operations on data
structure are defined as a function within

this module.

CHANGE LOG:

** / .14

#include <template. h>

Void dispPage(Int);

TEMPINIT() : Initiliaze the module variables.

Void
tempinit()

PagePtr[0]=NULL; /* initialize page pointers */
PagePtr[1] =NULL;
PagePtr[2] =NULL;
PagePtr[3]=NULL;
PG=; /* initialize page counter */

mylist=dlalloc(; /* create double linked list */
if (!mylist)

exit(O); /* if fail to create dllist

46

a N'
_,%

FGETLINE() Read line from file. Returns 0 if eof.

Int
fgetline(fp,s, limiit)

FILE '*fp; r
Char *s;
Tnt limit;

int c,i.;
i0O;
while (i<limit-l ! feof(fp))

cfgetc(f p);%
if (c' n')

return(i);

++i

1 0
if (feof(fp))
return(0);

return(i);

FIELDCOMPO: Compares two field. Used by DLADT.C.

int
fieldcomp(fieldl, field2)

Field *fieldl,*field2;

if (ield->ro!=fild2-row
if (fiefdlrow ow fi edld2->row)

return(fieldl->column -field2->column);

%~.p,

47S

-- .- - - - - - - 71 - -. . - -- - ;,

-77747 -

PARSELINEO:
This function gets input line and parses it in order to find

field message string defined within two special characters(.
Returns the message string without @ character.

Char/
parseline(line, fb)

Char *line;
Char *fb;

Char *walkptr;

walkptrline; /* set walkptr *

while (*walkptr!=t @') /* skip all characters until the*/
-H-walkptr; /* beginning mark of msg string *

++walkptr; /* skip @ mark *

while (*walkptr!=' @1* get message characters until *

fb=walptr / the end mark of message field*/

*+fb;wlkt

+-4walkptr;

return(fb);

P

SHOWTEMPLATES(: Displays all template names in template. fil. ,
Assumes all lines whose first character is # 4J
are template names. Displays string after #._1,
Provides --more-- facility if there is more thanone screen full template names.

Void /
showtemplates()

FILE *fptr;
int tnum;
Char *line,*readline;

fptr=fopen(TEMPLATEFILE, "r");
if (!fptr) a
{error((Int) 1); 2'

return;

readline=(Char *) malloc(80);
memset(readline,' 0',80);
line=readline;
tnum=l;
while (fgetline(fptr,line,(Int) 80))

/* while not EOF read lines */ -

if (line[0]--#1) /* if new template definition *-
/* display it with order number */

printf(" n%d %s n",tnum,(line+l));
tnum=tnum+ 1;

if (.(tnum % 12)) /* control scrolling

printf(" n%s","---- to see more hit any key --- ");
getche);

memset(readline,' 0',80); V.-
i ine=readl ine;

printf(" n n%s n","---- to continue hit space bar---");
free(readline);
getche(;
fclose(fptr);

'9

494

,%k%. ~~~~~~~~~~~~~~~~~~~~~~........2-:- .?7. -. ... -...... /..,.-....-.-.......-.... . .. ,.>j

LOADTEMPLATE: :
Gets the template information from file line by line,

all field information into data structure. Cooperates with
DLADT.C. In case of failure returns false.

Bool
loadtemplate(request) e

Int request; V.

FILE *fptr; /* pointer to template in file */
Char ch;
Char *readline,*line;
Int l,r,c,w,e,i;
Field *temp;
Bool flag,done,neof;

fptr=fopen(TEMPLATE_FILE, "r");
if (!fptr)

return(FALSE);
if (request-O)
return(FALSE);

/* prepare buffer for input line*/
readline=(Char *) malloc(80);
memset(readline,' 0',80);
line=readline;

i=0;
do{ s.fP

flag= fget line(fptr,line,(Int)80);
if (!flag) /* if EOF then return NULL */

return(FALSE);
if (line[O]='#') /* if template definition

i=i+l; p

while (i<request);
done=FALSE;
while (!done)

if (! fgetline(fptr,line,(Int)80))
/* read line from template file */

return(TRUE);
/* if not eof then */ 5'

switch (line[O]) /* evaluate the line

case •*• break; skip comment line

case 'V: done=TRUE; /* new template definition
break;

default /* load the field definition */
temp=(Field *)malloc(sizeof(Field));
if (!temp)

printf(" n out of memory n");
printf(" n program exiting..");
exit(0);

50 5

/* return to DOS

sscanf (line, "%d%d%d0/'d", &r,&c, &w,&e);
temp->rowr;

/* row number of field
temp->colurrnnc;

/* column number of the field *
temp->width--w;

/* width of the field
temp->editablee;

/'* flag for if it is editable *
/* dynamically allocate buffer *
/* for both message and reply *

temp->msg= (Char *)malloc(w+l);
memset(temp->msg,' 0',w+l);
parseline(line,temp->msg);
temp->reply- (Char *)malloc(w+l);
memset(temp->reply,' IO',w+l);

/* add the field record to list *

dladd(mylist,temp, fieldcomp); ,
1* set video page pointer *

if (PGO0)

PagePtr[0] temp;
PG=PG+l;

else if (PG>3)

error((Int) 4);
return(FALSE);

else if (r/(PG*25))

PagePtr[PG]=temp;R
PG=PG+l; ."

break;

memset(readline,' 0' ,80);
linereadline;

free(read line);
f close(f ptr);
return(TRUE);

51N~

V'

J' C

GOJPRIORQ:
Set the current field pointer to the prior field. I'

If there is no field to go, warns user maintains current field.

Void
goprior()

Field *curr,*temp;

curr=dlcurr(mylist); /* save the current field */
temp=dlprior(mylist);
while (temp){ 5)

if (PG>O && temp<PagePtr[PG])

PG=PG-1;
dispPage(PG);
return;

if (temp->editable) /* if there is no field to go */
return;

temp=dl}prior(mylist); /* do it until next editable field*/
ring bell(); /* warn the user and
dl_find(mylist,curr,fieldcomp);

/* resume the original position */
return;

GO_NEXT):
Set the current field pointer to the next fillable field.
If there is no field element to go, warns the user by sound.

Void N
gonext()

Field *curr,*temp;

curr=dl_curr(mylist); /* save the current field
temp=dlnext(mylist);

while (temp)

if (PG<3 && temp=PagePtr[PG+1])

PG=PG+l;
dispPage(PG);
return;

if (temp->editable) /* seek for next editable field */
return;

temp=dl-next(mylist);
rn bel /* seek next editable field II
ring bell();

dl find(mylist,curr,fieldcomp);

52

/* if there is no field to go */ 1

return; /*~ resume the previous position */

I

f.

-*A.

f,.--.

a,. .J,
,-t.,

,p

GFWIDTH(: Returns the field width (range of field)

Int
fwidth()

Field *temp;
temp=dl-curr(mylist);
return(temp->width);

GFCOL(: Returns current field column number.

Int

gfcol() r

Field *temp;

temp-dll_curr(mylist); S
/** tI

return(temp->co lumn);

GFROW(: Gets field starting row number and returns it.

Int
gfrow()

Field *temp;
temp=dl_ curr(mylist);
return((Int) (temp->row) % 25);

GFREPLYQ: This function returns the field entry edited by user
It is going to be used when it is needed to be reedited.**Chr*/

Char*
gfreply()

Field *temp;
temp=dlcurr(mylist);
return(temp->reply);

54

-6

GFMSGO: Returns the field prompt ~
**~ I

Char
gfmsg()

Field *temp;
temp=dl..curr(mylist);
return(temp->msg); I

FILLABLEO:
Returns TRUE if current field is editable otherwise FALSE. p;

Bool
fillable()

Field * temp;
tempdl..curr(mylist);

if (temp->editable)
return(TRUE);

return(FALSE);
.

F.
11%O

55~

07~~ ~ ~ ~ IF e r-,. 0 -M

76 -. -. .. JU77) r- . . J , M . . 9'A1P%

DISPPAGEO: '
This function displays the document format on screen page by page.
It is invoked by sending appropriate pade number.

Void
dispPage(pagenum)

Int pagenum;

Int r,c,w;
Field *temp;

clrscrno;
dl find(mylist ,PagePtr[pagenum] ,fieldcomp);

while ((dl...curr(mylist)!=NULL) &&
(d1..curr(mylist)! =PagePtr[pagenum+l]))

r=gfrowo;
cgfcol();
w-gfwidtho; .

putcur(r, c);
cputs(gfmsgo); I
if (fillableo)

('
writea((Char) ATTR,(Int) (w-strlen(gfmsgo)));
putcur(gfrow(),gfcol()+strlen(gfmsgo));
putstr(gfreplyo);

dl_npxc.Imylist);

/* set current field pointer *
/* to first editable field

tempdl-find(mylist,PagePtr[PG] ,fieldcomp);
while (!(temp->editable))

tempdl-next(rnylist);

56 '

Nk

% V VN.- 1' %1

ZU-'

4w

PAGEDOWNO: Displays the next page. O

Void A
page-down()

if ((PG>3) 11 (PagePtr[PG+]--NULL))

ring_bell();
return;

PG=PG+I;
dispPage(PG);

/ ********** '*WWW**WW W************************ *********** ,4

PAGE DOWN(: Displays the previous page.

Void
page-up()

if (PG=O)

ringbell();
return; }p

PG=PG- 1;
dispPage(PG);

CONTEXTQ: This function converts the contents of data
structure into text format and stores it global buffer 'TEXTBUF'.
Returns the address of buffer.

context() .

Int i;

Bool newline;
Int lastcol,lastrow,lc;
Int mfw,rfw,ccol,crow;
Field *temp; N

Char *pp; /* pointer to global buffer
-N

lastrow=O; S
lastcol=O; -

temp=dl first(mylist); /* start from first element ./-

pp=TEXTBUF; /* pointer to global buffer

for (i=lastrow;i< temp->row ;++i)
pp=(Char) CR; / handle vertical tab */

-fpp;(hr R++PP; ,

*pp=(Char) LF;
+4-lastrow;
++TDP;

57

A~VtqY %.%%.~%~.%%~%ry%-c-.~- %

while (temp) /* process each field

ccol=temp->column;
crow~ternp->row;
infw=strlen(temp->msg); I
rfwstrlen(ternp->reply);

if (crow > lastrow)

lastcol=O;
newl ine=-TRUE;

for (ilastrow ; i<crow ;+4i)

*pp=(Char) CR;

++Pp;
*pp=(Char) LF; 0

++lastrow;

if (newline)

for (ilastcol; i<ccol; ++i)

*pp= (Char)BLANK;
+-4pp;
+lastcol;

new line=FALSE;

str~cpy(pp ,temp->msg);
;- pp+strlen(temp->msg);
lastcollastcol+mfw;

if (fillable-=TRUE)

strcpy(pp ,temp->reply);
pppp+strlen(temp->reply);
lastcol= lastcol + rfw

for (imfw+rfw ; i<(ternp->width);++i)

*pp= (Char)BLANK;

++Iastcol;

tempdl next(mylist); /* advance to next field

pp=(Char) CR; / put end of document mark

*pp=(Char) U';%

pp&. 0' / treat each document as string*/

58

64

return(pp);

DEALLOCATE(): This function frees memory space already allocated

to doubly linkedlist we should free memory when user is done .-
or he wants to make another page in order to be able to load
new template file and load it into linked list.

Void
deallocate()

Field *temp; /* first free data in the list */
temp=dl-first(mylist);
while (!temp)

free(temp->msg);
free(temp->reply);
free(temp);
temp=dl_next(mylist);

STARTUP()
In order to start filling out the form displayed on screen,
displays first page and sets the current field pointer to first
fillable field in the list. Initialize PG counter.

Void
start up()

PG=O; /* set page numbet to zero */
dl first(mylist); /* set the pointer to first field */
dispPage((Int) 0); /* start to display first videopage*/
while (fillable)=FALSE) /* proceed to first editable field*/

dlnext(mylist);

/ **,'"*******-.** *,-**-****-.***-'****************** ,*********************"

MODULE : EDITOR.H

VERSION: 1.0

AUTHOR Metin AKINCI

DATE : 15 MAR, 1988
_

EXPLANATI ON:
Contains declarations and definitions for
EDITOR.C module

CHANGE LOG:

59

* ** .* ~ ** ~ .~ ~ %

/* Program Defined Header Files *

#include prporth,,#jrinclude "keyde .f

#include "bios lib.h"
#include "myascii. num" JA

'1

/* Compiler Header Files *
#include <ctype. h>
#include <mem. h> "'
#include <stdio. h>"'

#include <conio. h> -

"

/* Function prototypes for system, c *

extern Void putcur(Int, Int); .
extern Void readcur(Int *,Int *;.
extern Void writec();
extern Void writea();.,
extern Void writeca(Char,!nt,lnt);)
extern Bool shizttpressed(Void);

extern Int putstr(Char*)
extern Void ring-bell();

*Function prototypes for templatec

extern Void go-next();

extern Int gfrow();
extern Int gfcol();
extern Int gfwidth();extern Char *gfmsg);'
extern Char *gfreplyHe;l

60 ,'

MODULE : EDITOR. C

VERSION: 1.0

AUTHOR : Metin AKINCI

DATE 15 MAR, 1988

EXPLANATION:
This module gets the user responds for -

each field on the form specified by template ,
and also allows the user to edit his input.
Prevent user from overwriting on non fillable
fields and field message.

CHANGE LOG:

#include "editor. h"

/ ********************** ********************************** ,. -

GETREPLY):
Gets user response for currently edited field returns it.

Allows user to edit field by defined keys. Interprets the key
combinations for our own characters.,

Int
getreply(row, col ,width,msg, reply)

Int row,col,width; /* window location and width */
Char *msg; /* field message
Char *reply; /* input buffer */

Int k;
Int n,len;
Int mfw; /* message field width */
Int rfw; /* response field width
Int ccol; /* visible cursor column */
Char 'rcp ; /* Character pointer to buffer*/ "
Char *tmp; /* temporary character pointer*/
Char *buffer; /* Edit Buffer for response */

if (msg!=NULL)
mfw=strlen(msg); /* Get message field width */

else

61

mfw= O;
putcur~row,col+mfw); /* Place the cursor at the very

first character location in
the field to be filled out */

rfw-width-mfw; /* Calculate reply field width-, "
buffer=(Char *,)malloc(rfw+l);

/* Allocate memory fo buffer
of size response field width*/

memset(buffer,' O',rfw+l); /* Clear the buffer /
memcpy(buffer,reply,strlen(reply));

/* copy reply into buffer
/* in case that it was previously

edited '/
memset(reply,' O',strlen(reply));

/* clear previous string
cp=buffer; /* Set walk pointer on buffer */ y

while ((k=getkey())! =KRETURN)
/* Get key until RETURN key is hit*/

if (isascii(k) && (isprint(k)))
/* If it 49 not control key */

len=strlen(cp);
if (cp + len -buffer < rfw)

memcpy(cp+l,cp, len);
*cp=(Char) k;
++cp;

else
e ring bell(); /* buffer full

else /* Else if it is control key */

switch (k)

case KLEFT /* move left one char
if (cp > buffer)

- -cp; -.

break;

case KRIGHT /* move right one char *1
if (*cp !'0')

i-+cp; 0
break;

case KUP /* move prior field
memcpy(reply,buffer,strlen(buffer));

/* copy buffer back
free(buffer);
return(k);

case K-DOWN /* move next field
memcpy(reply,buffer,strlen(buffer));

/* copy buffer back /.

- .i~i T,,I.,
r62O

I %.,IF

f re(buf fer); -

return(k);

case KQPGUP remcpy(reply,buffer,strlen(buffer));
/*e copy buffer back

free(buffer);
return(k);

case K _PGDN memcpy(reply,buffer,strlen(buffer)); .
/* copy buffer back

f ree(buf fer);
return(k);

case K..CTRLH /1r destructive backspace%
if (cp>buffer)

tmPcp-1 %
memcpy(tmp, cp+l ,strlen(tmp));cpJ.

break;

case K-HOME /* go to the beginning of buffer*/ *.

cpbuffer;
break;

case K_END 1* go to the end of buffer * :

while (*cp !=' 0')
++cp;

break;
case KCEND menicpy(reply,buffer,strlen(buffer));

f/c copy buffer back
free(buffer);
return(k);

case KDEL /* delete character at cursor *
memcpy(cp ,cp+l ,strlen(cp));
break;

case KESC /* cancel current input e a-
memset(buffer,' 0' ,rfw+l); ::
cpbuffer;
break;

/* Following keys are being used to convert to TURKISH chars *

case KALTC if (shift~pressedo)
,'ccp= (Char) ascii_C;

else
lfcp== (Char) asciic;

break;
case KALTG if (shift..rseO

*cp= (Char) ascii_.G;
else

*cp= (Char) asciig;

break;

631

case KALTI if (shiftpressedQ)
*cp= (Char) ascii-I;

else
'cp= (Char) ascii-i;

break;

case IQALTO if (shift...pressedQ)
*cp= (Char) ascii.f;

8 else
*cp= (Char) ascit..o;

break;
case KALTS if (shift~pressedQ)

*cp= (Char) asciiS;
else

*cp= (Char) ascii~s;

break;
case K_.ALTU if (shiftpressedQ)

*cp= (Char) ascii_ U'
else
*cp= (Char) asciiu;

break;

default
rlingjbeli11
break;

ccl~olmf;/* display the reply window *

a putcur(row,ccol);
writec(' ',(Int) (width-mfw));a
putstr(buffer);
putcur(raw, ccol+(cp-buffer));

/* reposition the cursor *

-memcpy(reply,buffer,strlen(buffer));

/* copy buffer back *
free(buffer);
return(k); /* return the key that cause

to end function

6,41

OF %;% % % %4

EDITPAGEO:
Function that allows user to edit page form displayed on screen.
Invokes function getreply that gets user reply for each field.

Void
editpage()

Int row, col ,width;
Char *m
Char *r;

Int flag;
Bool done;

done=FALSE;
do

row=gfrowo;
col=gfco I();
width=gfwidtho;
m=gfmsgo;
r=gfreplyo;

/* get user response and store it*/

flag= getreply(row,col,width,m,r);
switch (flag)

case KDOWN: /* Go next fillable fieldgo_next (; :%
break;

case K_UP /* Go previous fillable field */
go prioro;
break;

case KPGUP: /* scroll up */
page-upo;
break;

case KPGDN: /* scroll down */
pagedowno;
break;

case KCEND /* end of the editing session *1 /.-*

done--TRUE;
break;

default go nexto;
X.

break;

while (!done); /* do until end of page */

65%

.-1

,t?.A.

P a I NTE ". C

VERSION: 1. 0

AUTHOR : Metin AKINCI

DATE : I MAY,1988

EXPLANATION:
Performs two main functions. Prints

content of program buffer and prints doclog. fil
file. Allows printing Turkish characters
For each character, separate function
is assigned. Input is filtered and if any
special character is encountered, appropriate
function is invoked and that character is
printed.

CHANGE LOG:

*..

#include <stdio. h>

#include "prport. h"
#include "myascii.num" /* file which contains ascii */

/* numbers for our own char */
#include "extra.fnt" /* Include file that contains extra*/

/* characters fonts for printer */

#include "epson. dat" /* printer commands file

GLOBAL extern Char *TEXTBUF; /* Pointer to text buffer */

/* External function declarations*/
extern Void putcur(Int,Int);
extern Void drawframe(Int,Int,Int,Int);

char *DOCLOGFILE="doclog. fil"; /* file name to be printed out */

66

1- .

SETPRTGMODE(:
Sets printer dot graphics mode by sending appropriate ESC sequence.

Void
setprtgmode(pptr)

FILE *pptr; /* Pointer to printer stream */

int i;

for (i=O;i<4;++i) /* Send ESC sequence to set
fputc(p-grmode[i] ,pptr); /* printer to dot graphics mode */

PRINT_C):
Prints the new lowercase 'c' letter by sending dot patterns to
the printer.

Void
print-c(pptr)

FILE *pptr;

int i;
setprtgmode(pptr); /* Send ESC sequence to set */

/* printer to dot graphics mode */
for (i=0;i<8;++i)
fputc(cpattern[i] ,pptr); /* Copy new c pattern to printer*/

PRINTJJCCQ:
Prints the new uppercase 'C' letter by sending dot patterns to
the printer.- -p.

Void
printCC(pptr)

FILE *pptr; -

int i;

setprtgmode(pptr); /* Send ESC sequence to set
/* printer to dot graphics mode */ .- N

for (i=; i<8; ++i) 5
fputc(CCspattern[i] ,pptr); /* Copy new C pattern to printer */ -

a.-

67

%

,% a'[
67N..A.

-r Pr i wrro

I

PRINT-j()
Prints the new lowercase 'i' letter by sending dot patterns to
the printer.

Void
print i(pptr)

FILE *pptr;{
int i;

setprtgmode(pptr); /* Send ESC sequence to set
/* printer to dot graphics mode */

f or (i=0; i<8; ++i)

fputc(i_pattern[i] ,pptr); /* Copy new c pattern to printer */

PRINT_CIO:
Prints the new uppercase 'I' letter by sending dot patterns to
the printer.
*** /

Void
print-CI(pptr)

FILE *pptr;

int i;
setprtgmode(pptr); /* Send ESC sequence to set */

/* printerto dot graphics mode */
for (i=O;i<8;++i)
fputc(Clpattern[i] ,pptr); /* Copy new c pattern to printer */

S

PRINT -Go:
Prints the new lowercase 'g' letter by sending dot patterns to
the printer.

Void
print-g(pptr)

FII *pptr;

int i;

setprtgmode(pptr); /* Send ESC sequence to set
/* printer to dot graphics mode */

for (i=0; i<8;++i)
fputc(g_patterni] ,pptr); /* Copy new g pattern to printer */

68

.%

PRINT CG(:
Prints the new uppercase 'G' letter by sending dot patterns to
the printer.

Void
printSCG(pptr)

FILE *pptr;

int i; t
setprtgmode(pptr); /* Send ESC sequence to set */

/* printer to dot graphics mode */
for (i=O; i<8; ++i)
fputc(CG_pattern[i] ,pptr); /* Copy new C pattern to printer */ -.-

/ *** 'i

PRINT_():
Prints the new lowercase 'o' letter by sending dot patterns to
the printer. %

Void

print-o(pptr)
FILE *pptr;

int i;
setprtgmode(pptr); /* Send ESC sequence to set */

/* printer to dot graphics mode */
f or (i=0; i<8; ++i)

fputc(opattern(i] ,pptr); /* Copy new o pattern to printer */ 0

PRINTO(: .O

Prints the new capital '0' letter by sending dot patterns to
the printer.

Void
printC0(pptr)

FILE *pptr; .'

int i; " -

setprtgmode(pptr); /* Send ESC sequence to set */ S
/* printer to dot graphics mode */

for (i=0; i<8; ++i) '.

fputc(COpattern[i] ,pptr); /* Copy new 0 pattern to printer */

p..%

A.-k

A.,...

69

-. rW..~ 10-
-

% -.

PRINTUO:
Prints the new lowercase u' letter by sending dot patterns to
The printer.

Void
print-u(pptr)

FILE *pptr;

int i; M
setprtgmode(pptr); /* Send ESC sequence to set */

/* printer to dot graphics mode */
for (i0O;i<8;++i.)
fputc(u pattern[i] ,pptr); /* Copy new u pattern to printer */

PRINT CU():
Prints the new uppercase 'U' letter by sending dot patterns to 0
the printer. .4

Void
printCU(pptr)
FILE *pptr;

int i;
setprtgmode(pptr); /* Send ESC zcquence to set */

/* printer to dot graphics mode */
for (i=0;i<8;++i)
fputc(CU-pattern[i] ,pptr);/* Copy new U pattern to printer */ "

/ *AA********-**-A***----****************** **************************

PRINT So:
Prints the new lowercase 's' letter by sending dot patterns to
the printer.

Void
print s(pptr)

FILE *pptr;

int i; .- :
setprtgmode(pptr); /* Send ESC sequence to set */

/* printer to dot graphics mode */
for (i=0;i<8;++i)

fputc(s-pattern[i] ,pptr); /* Copy new s pattern to printer */

-. -p

°.-p

o .

71)

OI

PRINT CS() :
Prints the new uppercase 'S' letter by sending dot patterns
to printer.

Void
printCS(pptr)

FILE *pptr;

int i;
setprtgmode(pptr); /* Send ESC sequence to set
for (i=O;i<8;++i) /* printer to dot graphics mode */
fputc(CS-pattern[i] ,pptr); /* Copy new C pattern to printer */

/ ******************** ** ,"- .

SETPRT): Resets the printer. Cancels all possible modes

Void
setprt(pptr)

FILE '*pptr;

int i;

fputs(p cbold,pptr); /* Cancel bold mode
fputs(p cds,pptr); /* Cancel double strike mode */
fputs(p cital,pptr); /* Cancel italic mode
fputs(p-ccmp,pptr); /* Cancel compressed mode
for (i=O; i<3; ++i)

fputc(p cul[i] ,pptr); /* Cancel underline mode
fputs(p_init,pptr); /* Printer hardware initialize */

1 t

.N .

• . . .1
,.- :,..-:,. @ < ,-. i ... ,:... ..-...:

W% V-. -r;r-1rF7WFL P 5-

PRINTPAGE()
Gets the contents of TEXTBUF global buffer and by searching
and printing extra characters sends them to printer.

Void
print-page()

FILE *printer;
Char ch;
Char *bufptr;
Int i,count;

countgetnumbero;

printer= fopen("PRN" w")
if (printer=NULL)

clrscrno;
drawframe((Int)19 ,(Int)15 ,(Int) 23,(Int) 65);
putcur((Int) 21,(Int) 17);
print f(" n%s","PLEASE MAKE SURE PRINTER IS ON");%
printf ("%s n" ," AND HIT ANY KEY");
getcheo;
return,

clrscrno;
setprt(printer);
for (iO; i<count;4-Ii)

bufptr=TEXTBLJF;
while ((ch=-*bufptr)!=' 0')

switch (ch)

case ascii-c: print..c(printer);
break;

case ascii-C: print..CC(printer);
break;

case ascii..i: printji(printer);
break; ~5

case asciiI: print_.CI(printer); 5.

break; C

case ascii-o: print~o(printer);
break;

case asciiO0: printC0(printer);
break;

case asciis: print~s(printer);
break;

case asciiS: print..CS(printer);
break;

case ascii.u: print u(printer);
break;e

case asciiU: print CU(printer);

case scii break;
cas asii-g: print..g(printer);

72]

%I

0

break;
case asciiG: print CG(printer);

break;

default fputc(ch,printer);

putchar(ch);
++bufptr;

fputc(FF,printer); /* Put form feed character */
/* for next copy */

734 0

J.-g

.0 -

PRINT_FILEQ: Prints program defined doclog.fil file.P

Void
print-file()

FILE *printer,*fptr;
Char ch;
Char *bufptr;
Int i,count,

fptrfopen(DOCLOGFILE ,"r");
if (! fptr)

error((Int) 1);
return,

printer= fopen(lPpN4 t ,

if (printer=NULL)

clrscrno;
drawframe((Int)19,(Int)15 ,(Int) 23,(Int) 65);

printf(" n%s","PLEASE MAKE SURE PRINTER IS ON");
printf ("%/s n" ," AND HIT ANY KEY");
getcheo;
return;

clrscrno;
setprt(printer);
while (!feof(fptr))

chfgetc(fptr);
switch (ch)

case ascii-s: print c(printer);
break;

case asciiC: printCC(printer);
break;

case asciL-i: print-i(printer);
break;

case ascii-l: print-CI(printer);
break;

case ascii-o: print o(printer);
break;

case ascii.0: printCO(printer);
break;

case ascii_5: print-s(printer);
break;

case asciiLS: print..CS(printer);
break;

case ascii u: print u(printer);
break;

case asciiU: print-CU(printer);
break;

case ascii-g: print g(printer);
break;

74

.

case ascii_G: print...CG(printer);
break;

default fputc(ch,printer);
break;

et.

75-.,

ODULE : BASE. C

VERSION: I. '

AUTHOR Y etin AKINCI

DATE : 15 MAY, 1988

EXPLANATION:
Implements index sequential access to

database file which holds documents.
cooperates with LLADT. C module.

CHANGE LOG:

-1include "prport. h"

.include <stdio. h>
#include <string. h>
#include <mem.h>

GLOBAL extern Char *TEXTBUF; /* pointer to global buffer

PC definitions on the key to database

extern Char *KEYWORD; /* pointer to keyword buffer */
#define KEYSIZE 12 /* define size of keyword
!-/define BUFSIZE 3500;

function prototypes for userinterface module

extern Void getdocinfo(Char);
extErn Char *getkey2db(;

File name definitions related to Dbase.C module

Tha, *;\"="?ir = :index. " ' index fi s
"':' " on< : i : zo;se. l , " "

"ul.frilLr - doclog. fi, , ile to keep record of
incoming document

5,-

.4

;.. , ,.,,,,.,.-:

/* definition of data structure for index sequential access *
/* implementation *

typedef struct INDEX

Char *key2db;
}INDEX;

typedef char INDXLST; /* generic pointer to llist
INDXLST *indexlist; S.

#/define POSITIVE 1

1*h****** Function prototypes for linked list module *****

extern char *11_alloco;
extern INDEX *lljfi.nd(INDXLST *,INDEX *,int (pfcomp)()); .
extern Bool ll-delete(INDXLST *,INDEX*)
extern INDEX *ll-next(INDXLST *);
extezn INDEX *11lfirst(INDXLST)
extern INDEX *11_last(INDXLST)
extern Bool 11.add(INDXLST *,INDEX *,int (*pfcomp)());

MYSTRCMPO: Com~parss two string in llnode.
Function like strcmp().

I nt
iystrcmp(nodel ,node2)

INDEX *nodel ,*node2;

Int i;

i=0;
while ((nodel->key2db)[i]=(node2->key2db)[i])

if (nodel->key2db[i-I+] 1= 0')
return(0);

return((nodel->key2db)[i] -(node2->key2db)[i]);

-

V.

a-,6

a. INDEXCMPO:
compares two node of linked list. In order to put new item
at the end of the list, it always return positive.

Int
indexcmp(s ,t)

INDEX * ,t

A return(POSITIVE);

LOADINDEXO: Loads keywords from index file into linked list.

Void
loadindex()

FILE *fptr;
Bool flag;
Char linef 801;
INDEX *indexptr;

a. indexlistll-alloco;
fptrfopen(INDEXFILE ,"r
if (fptr=NULL) /* if file is not existing, *

return; /* assume there is no document *
/* in database. *

while (fgetline(fptr,line,(Int) KEYSIZE))

indexptr=(INDEX *)malloc(sizeof(INDEX));
indexptr->key2db=(Char *) nalloc(KEYSIZE+l);
memset(indexptr->key2db,' 0',KEYSIZE+l);
strcpy(indexptr->key2db, line);
11..add(indexlist, indexptr, indexcmp);

fc lose(fptr);

UPDATEINDEXF): Writes all keywords back tto index file in the same
order in the linked list.

Void
updateindexf()

FILE *fptr;
Int i;
INDEX *temp;

fptr=fopen(INDEXFILE,"w+");/* open index file
/* if file does not exist create*~/

while (temp) /* write everything in indexlist'j
a, /* back to index file .*

fprintf(fptr,"%.Os n",temp->key2db);

tea.-et~nels)

fc lose(fptr);
tepll_first(indexlist); /* first free the data in LLIST ~
while (temnp)

free(temp);

11_free(indexlist); /* then free the linked list *

% .

71).

GETINDEXQ: Gets the index value for a certain keyword.
The relative location in the list implies index for that keyword.

Int
get index()

Int i;
INDEX *tenp,*countptr;

temp=(INDEX *) malloc(sizeof(INDEX));
temp->key2db=(Char *) malloc(KEYSIZE);
memset(tenip->key2db,t Ot ,KEYSIZE);,
strcpy(temp->key2db,XEYWORD);

countptrllfirst(indexlist);

while (countptr)

if (!(strcmp(countptr->key2db,temp->key2db)))
return(i);

countptrll-next(indexlist);

nAE-keyO d(hr*)alKESZ)

Sae the.dd inexl isdtabas indxc insanimp);tine

valueto it

Bo4l

save key

INE *new

new--INDE*) mllocsizef(INEX))

ne-kNd=Ca *mlo(ESZ)

stcpew>eydKYO.)

lladWnelitne Iexm)

so)

DISLPAYBUFFER(): Displays the program buffer.It is invoked after document has been fetch in buffer. ']
Provides -- more -- facility.-

Void %disp laybuf fer

Char *temp; /* temp pointer to bufferInt linecount, /* variables to control scrollkt c h e cr
PC;

Char ch;
temp=TEXTBUF; /* temp pointer to buffer */

/* intialize variables
linecount=l; /* number of lines displayed */ ..f
pc=l; /* number of video pages */ .r
clrscrn(;
temp=TEXTBUF; /* set pointer to the beginning */

/* of buffer */
while ((ch=temp)!= ' 0') /* display document requested */

putchar(ch); /* control scrolling
++temp; d
if (ch ' n')

linecount= inecount+l;

if (linecount %(pc'*23)==0)
pc=pc+l;
fprintf(stdout," n%s","--- more --- hit any key ... n");

getche); S.

fprintf(stdout," n%s","--- hit any key to continue ---);
getche(;

I 1

'j."--. P

'<-

BROWSE): It is used to browse any document from database file.
It requests the keyword, gets index then fetches document into ,
buffer. Calls display buffer routine.
Returns FALSE in case of failure.

Boo 1
browse()

Int recnum;
Int size;
Int j;
Char *temp;
FILE *fptr;
Int i;
Int recsize;

fptr=fopen(DBASEFILE,"rb");
if (fptr=NULL)

error((Int) 1);
return(FALSE);

recnum=getindex); /* Get the index */
if (! recnum) /* if not found */

/* return after error messages */ S
error((Int) 3);
return(FALSE);

temp-TEXTBUF; /* temp pointer to buffer
for (i=l;i<recnum;++i) /* get the offset to document */

fscanf(fptr, "%d",&recs ize); 5
fseek(fptr,(Long) recsize, 1); #,

fscanf(fptr,"/od",&size); /* get the size of document */
for (j=l;j<size;++j) /* copy document into buffer */

*temp=fgetc(fptr);
++temp;

temp' 0'; / attach string terminator 'V
displaybuffer); /* display the buffer */

/* by controlling scrolling */
rewind(fptr);
fclose(fptr);
return(TRUE);

'2

WWI!

SAVEDOC(): Saves the document currently editec. into DBASEFILE.

Void
savedoco

FILE *fptr;
Char ch,*buffer;

buffer=-TEXTBUF; /* set pointer to buffer *
getkey2db(); /* get key to dbase from user *
save_key(); /* save key in the linked list *
fpt r= fopen (DBASEFILE, "ab+");

/* append the document * "

/* first write its size *
fprintf(fptr,"%d n", strlen(TEXTBUF));
while ((ch=*buffer)!= ' 0') /* then write buffer into file /

fputc(ch, fptr) ;
++buffer;-'

fclose(fptr) ;

ENTERLOG(): Allows the user to enter the information about any
incoming document. Information about document is
provided by the function getdocinfo() that is defined
within userinterface module. .-

Void ""

{C

FILE *fptr; ,K
Char jine[80]; .

fpt r=fopen(DCCLOG, "a+"); N

getdocinfo(line) " .
fprint f(fptr, %s n,line);
fc lose(fptr) ; 2

83C

0

k .- . % ,, * '* - , . " + ' * -'. S -.' ". % , . : + ' - S .P S .P P P S -+ "-

MODULE USERINT.C

VERSION: 1.0

AUTHOR Metin AKINCI

DATE : 1 MAY, 1988

EXPLANATION:
Implements user interface part of the project.

Gets all input values from user returns
to -' l-ing module.

CHANGE LOG:

#include "prport. h"
#include "bioslib. h"

#include <stdioh>
#include <alloc. h>

/* DEFINE BOX CHARACTERS */

#define VBAR2 186
#define HBAR2 205
#define ULC22 201
#define URC22 187
#define LLC22 200
#define LRC22 188

/* Function prototypes */

extern Void clrscrno;
extern putcur(Int,Int);
extern fgetline(FILE *, Char *,int); •
extern putsbuf(Char *,Char *);
extern putcbuf(Char *,Char);

GLOBAL extern Char *KEYWORD;

% %
-S

-- + , , +.-.,- - - - - ' - -; ' -, zj'::, . .' -i. '.'4 , vi -'f - ',--'.",f.' ":-..' v ".' 0<

/* Define pointers to messages to be displayed in module */

static char MAINHEADER[], M<<<<<< MAIN MENU >>>>>>"

static char *%MAINMENU[I),'1. PREPARING DOCUMENT ...

"2. BROWSING A DOCUMENT .•",
"3. ENTERING AN INCOMING DOCUMENT..",
"4. PRINTING INCOMING DOCUMENT LOG..",
"5. EXIT TO DOS.."

static Char ASKENTER[]="Please enter your choice=>"; 'e

static Char ASKSAVE,,=
WILL THIS DOCUMENT BE SAVED? (Y/N)..; .

static Char ASKKEY[] =
" PLEASE ENTER THE DOCUMENT ID IN CORRECT FORMAT.. ";

static Char HOWMANY[]=
"HOW MANY COPY DO YOU WANT ? =>

static Char HOWMANYHELP[]=
"ZERO IMPLIES NO OUTPUT. MAXIMUM 8 COPIES.."; •

#define MENULX 5 /* Main menu left corner coordinates */
#define MENULY 15
#define MENURX 21 /* Main menu right corner coordinate */ '

#define MENURY 65
#define MSGX 23 /* Prompt area coordinates
#define MSGY 5

#define KEYSIZE 12
.,.[

10

8.

".. .,,.. • -.. €...,'. r. ., '€ -. '- , .. , ,. . •. - . - 5 .%* 5 ..* 5 .*

PUTIIEADERO: Displays any header to specified location.

Void
putheader(x,y, strptr)

Int x,y;
Char *strptlr;

putcur((Int)x,(Int)y);
puts(strptr);

DRAWFRANEO: Draws frame for the given coordinates.

Void
drawframe(left~upX, leftupY,rightdownX, rightdownY)

Tnt leftupX, leftupY;
Int rightdownX, right duwnY;

Int i;
putcur((Int) leftupX, (nt) leftupY);
putchar(ULC22);
for (i0; i< rightdownY-leftupY-l;++i)
putchar(HBAR2);

putchar(URC22); .
for (ileftupX+l; i<rightdownX;+-Hi)

putcur((nt) i, (tnt) leftupY);
putchar(VBAR2);
putcur((Tnt) i,,(Int) rightdownY);
putchar(VBAR2);

putcur((Int) rightdownX, (Int) leftupY);
putchar(LLC22);
for (iO; i<rightdownY-leftupY-1;++i)%
putchar(HBAR2);

putchar(LRC22);

IFSAVEOI:
Function that prompts the user if he wants to save the document.

Boo 1
ifsave()

Char choice;

clrscrn(;
putiaeader((Int)M1SGX, (Tnt) MSGY,ASKSAVE);
do

putcur((Int) MSGX,(Int) (strlen(ASKSAVE)+MSGY+2));
scanf ("'%c" ,&choice);

while (choice!='y' a'& choice-!=Y' &&choice!='n' && choice!='N'); L
if (choice='y' IIchoice='Y')S

S6 %

...

return(TRUE);

return(FALSE);

GETKEY2DB():
Gets the key to database. Prompts the user to enter the keyword
then gets it and stores in the global variable KEYWORD.

Char
~etkey2db()

clrscrno; /* Prompt ths user to enter the *
/* keyword.

putcur((Int) MSGX,(Int)MSGY);
printf("%s" ,ASK .KEY);
putcur((Int) (MSGX+l),(Int) 15);
writea((Char) ATlTR,(Int) KEYSIZE);

/* color the input area *
getreply((Int) (MSGX+l),(Int) 15,(Int) KEYSIZE,NULL,KEYWORD);

/* get the keyword from the user*/
strupr(KEYWORD); /* convert it to uppercase *
return(KEYWORD);

GETDOCINFO(): Gets the incoming document information from user
allows user to edit his input.

Vo id
getdocinfo(where)

Char *where;

Char 1ine[8O0
memset(line, O',80);
clrscrno;
drawframe((Int)16 ,(Int)15 ,(Int) 22,(Int) 75);
putcur((Int) 17,(Int) 18);
printf("PLEASE ENTER THE INFORMATION ABOUT INCOMING DOCUMENT"1); I
putcur((Int) 19,(Int) 18);
printf("DOCUMENT ID FROM DATE ')

putcur((Int) 21,(Int) 17);
writea((Char) ATTR,(Int) 58);
getreply((Int)21,(Int) 17,(Int) 58, NULL,line);
strcpy(where, line);

87

J*24L

MMENUO: Function that diply main menu.

Void
mmenu()

Int x,y,n,i;
cirscrno; '

putheader((Int)3,(Int) 25,MAINHEADER);
drawframe((Int) MENULX,(Int) MENULY,(Int) MENURX,(Int) tIENURY);
n= sizeof(MAINNENU)/sizeof(Char 2
putcur((Int)(I4ENULX+2),(Int)(MENULY+2));

for (i=O;i<n;++i)
L

printf ("%s nt',MAINMENU[i])
readcur(&x,&y);
putcur((Int)(x+2) ,(Int)(MENULY+2));

GETREQUESTO: Gets the number of the request.

Int
getrequest()

Char choice;
mmenu();
putheader((Int)MSGX, (Int)riSGY 3ASKENTER);
putcur((Int) MSGX, (Int)MSGY);
printf("%s" ,ASKENTER);

do

putcur((Tnt) MSGX,(Int)(strlen(ASKENTER)+2+MSGY));
scanf("%c" ,&choice);

while (choice<'l' 11 choice),1 5r);

return(choice-t O');

A. z o

GETNUMBE&):
Gets the count of the copies from user. 0 implies nothing
will be printed.

I nt
getnumber()v

Char num;

clrscrnQ;
drawframe((Int)19,(Int)15 ,(Int) 23,(Int) 65);
putcur((Int) 21,(Int) 20); A,
printf("%s n" ,HOWMANY);
putcur((Int) 22,(Int) 20); .'

printf("%s n",HOWMANY_HELP);
do

putcur((Int) 21,(Int) (20+strlen(HOWMANY)));
scanf("%c" ,&num);%

while (num<'0' num> '8');
return(num-'0')

GETTEMPLATEQ: Gets the number of the template from user.

I*********************************

gettemplate()

fint num;

clrscrno;
printf("'%Os n"," ALL TEMPLATES AVAILABLE HAS BEEN LISTED BELOW"); .;
printf(" Find the number for template that you need..V").
showtemplateso;
clrscrnQ;
drawframe((Int)21,(Int)lO,(Int) 23,(Int) 69);
putcur((Int) 22,(Int) 12);
printf("ENTER THlE NUMBER OF TEMPLATE YOU WANT TO EDIT.")
writea((Char)ATTR,(Int) 3);
s can f("%Od ,&num);
return(num);

r r-.r, .
% -9

.r'-
JL AA A.

"ik3" DOCUIMENT OEJIEMYUO SOFTIE DESIGN THAT SUPPORTS 22
TtISH B.PIUET(U) NAY. POSTIOI5ATE SCHOOL MONTEREY
CAE N KNCI JUN 09FS 2'.rn....rnD FO 1/5nLr

4,J.

p

U.

&

11111
4***4 - WI11111 = ~ L *~ 111HZ ~

- ~ *~ ILII!~

11111 -

11111 '~ !J I *4~ l~ilJ I 6
- -.- - &

p

I -

I
~44~U

t
.4-

4-
I..

-a
I-.

7'
4,

.4

w w V V V V V V V V V V U V U

* - * ~
* ~ '- I'

ERRORO:
Simple error handler function. Prompts user according to errorcode
which is determined by related modules.

Void
error(errorcode)

Int error_code;

char ch;

clrscrno;
ringbell(;
drawframe((Int) 8,(Int) 20,(Int) 10,(Int) 60);
putcur((Int) 9,(Int) 22); IX
printf("%s",". ");

switch (error-code){

case 1 :printf("%s"," Can not open file..");
break;

case 2 :printf("%s"," Error while loading template..
break;

case 3 :printf("%s"," Error ! Possibly incorrect keyword");
break;

case 4: printf("%s"," Template too long ");

default: break;
}
putcur((Int) 24,(Int) 10);
printf("%s","PLEASE HIT ANY KEY TO CONTINUE..");
getcheo;

I

90
%A b

%|

MODULE : SYSTEM.H

VERSION: 1.0

AUTHOR : Metin AKINCI

DATE : 25 FEB,1988

EXPLANATION: Header file for system. c module
It contains all definitions and
data structure used within system. c module

CHANGE LOG:

ip

#include "prport.h" /* INCLUDE FILE FOR PROJECT GLOBALS */
#include "keydef.h" /* KEYBOARD SCAN CODES
#include "bioslib.h" /* BIOS FUNCTIONS

#include <dos.h> /* Include neccesary TC header files*/
#include <bios. h>
#include <stdio. h>

1 * DEFINITIONS OF DATA STRUCTURE FOR REGISTERS

struct WORDREGS

WORD ax,bx,cx,dx,si,di,cflag;
1 ;

struct BYTEREGS
{

BiTE al,ah,bl,bh,cl,ch,dl,dh;

union REGISTER

struct WORDREGS x
struct BYTEREGS h

} REGS;

91

'.5.

-. :T 7, ~ . * -

/ ***
***********MDL:STE.C

MODULE : SYSTEM. C

VERSION: 1.0

AUTHOR Metin AKINCI

DATE 14 JAN,1988

EXPLANATION:
This module contains system dependent

functions definitions. All functions within
this module are system dependent. To port the '/

program to the another system, this entire module
must be changed with the one which contains
appropriate system calls.

CHANGE
LOG:

Throughout this project IBM PC default video
page number (which is zero) has been used.
All functions in this modules work will under
this assumption.
To make them general purpose, page number
must be added to function parameters. S

** **** ********/

#include "system. h"

PUTCURO:
Gets the row and column number of new cursor location and sets
the cursor to given coordinate.

/

Void
putcur(r,c)

Int
r,c;

union REGS inrg,outrg ;

inrg.h.ah=CURPOS; /* cursor addressing func no */
inrg.h.dl=c; /* column coordinate */
inrg.h.dh=r; /* row coordinates
inrg. h. bh=O; /* video page number */

int86(VIDEO,&inrg,&outrg);
/* BIOS video routine call

*/

}V

92

.~~**%:d% . %? ft ------- ---- -- --- -~

- ~...%..

CLRSCRN): Clears screen by invoking BIOS VIDEO service 6.

Void
clrscrn() (

union REGS rg;
rg.h.ah=SCROLLUP; /* screen scroll code */
rg. h. al=O; /* clear screen code *-
rg.h.ch=O; /* start row */
rg.h.cl=0; /* start column
rg.h.dh=24; /* end row */
rg.h.dl=79; /* end column */
rg.h.bh=O; /* blank line is black

int86(VIDEO,&rg,&rg); /* BIOS video routine call
putcur((Int) l,(Int) 1); /* reposition the cursor */

/ ***
READCURO:
Reads the cursor position by calling BIOS VIDEO service 3.

Void
readcur(r, c) 0

Int *r,*c;

union REGS inrg,outrg

inrg. h. ah=GET_CUR; /* AH=function no 3
inrg.h.bh=O; /* video page number

int86(VIDEO,&inrg,&outrg); /* DOS call

r=outrg.h.dh; / returned row number */ *"

c=outrg.h.dl; / column number */

GETKEY(:
Gets key from keyboard and if it is non ASCII key
returns scan code for it.
*** /

Int
get key()

Int ch;
/* if normal key codes %/

if ((ch=bdos(KEYIN,0,0) & LOBYTE) != 0')
rcturn(ch);

/*convert scan codes to unique*/
/* internal codes *1

return((bdos(KEYIN,0,0) & LOBYTE) { XF);

93. ,'-

,-,.$

',',,

93 .X'

,%,,,i,

.0

WRITECO:
This function writes a character or string of identical characters,
starting at the current cursor position. It does not advance
the cursor.

Void
writec(ch, count)

Char ch;
Int count;

union REGS inrg,outrg;

inrg. h. ah=WRITE..CIIAR;
inrg. h. alch;
inrg. h.bh=O;
inrg. x.cxcount;
int86(VIDEO,&inrg,&outrg);

/~~~~~~~~~~~~~~~~ bp*********************************
READCA(): Reads the character with attribute

readca(ch, attr)
Char *ch;
Int *attr;

union REGS inrg,outrg;
inrg. h. ah=RE..C..ATTr
inrg.h.bh=O;
int86(VIDEO ,&inrg,&inrg);
*choutrg. h. al
*attroutrg. h. ah;

N.;-

94a

1 -0 ne, Ile V

e

WRITECA(: Writes character with attribute for the number of count

Void
writeca(ch, attr,count)

Char ch;
Char attr;
Int count;{
union REGS inregs,outregs;

inregs. h. ah=WR_C_A'F ;
inregs.h.al= ch ;
inregs. h. bh= 0; "V
inregs. h. bl= attr ;
inregs. x. cx= count;

int86(VIDEO,&inregs,&outregs);

WRITEA):
Reads N characters from current cursor location on and
writes them back with specified attribute

*** /.S

Void
writea(atr,n)

Char atr;
Int n

Int i;
Char attrx;
Int chx;
Int r,c; .'

readcur(&r,&c);
for (i=0; i<n; ++i)

putcur(r, c+i);
readca(&chx,&attrx); %
writeca(chx, atr,(Int) 1);

putcur(r,c);

/**0

RINGBELLO: Rings the bell by sending character defined as BELL
to the output port. /

Void
ringbell()

putch(BELL);

-X

95V_,

N'- I -%Nl - %,& *a ','. -%,

PUTSTRQ:
Displays the null terminated string on the screen from current cursor
position on.

Int
putstr(s) p

Char *5;

Int r,c,cC;

readcur(&r,&c);,
for (cOc; *s!= O';++s,++c)

putcur((Int)r, (Int)c);
writec(*s,(Int) 1);

putcur((Int)r,(Int)c);
return(c-cO);

WRITEMSGQ: Writes field message with specified attribute.

Int
writemsg(r,c,w,msg, attr)

Tnt r,c,w;
Char *msg;r
Int attr;

Int i;
Char ch;
patcur(r,c);
i0O;
while ((*msg!=& 0') && (i<w)

ch=-*msg;
writeca(ch,(Int) attr,(Int)l);
putcur(r,4-+c);
++msg;
++i

return(i);

}VP0 Sesatv vdopg
lI***?***

Void
svdpg(vp) .

Tnt vp; '

union REGS inregs,outregs;
inregs. i. ah=SETVDPG ;/* BIOS Video Service 5
inregs.h.al= vp ; /* Active display page to be set ~
int86(VIDEO ,&inregs ,&outregs);

96

:23

ACVDPG): Gets active video page

Int
acvdpg()

union REGS inregs,outregs;

inregs. h. ah=GETVDMOD ; /* BIOS Video Service 15
to get video information

int86(VIDEO,&inregs,&outregs);
return(outregs.h.bh); /* return the active display page

number in bh register */

/****** *** **

SHIFTSTATUSO: Gets shift status

Bool
shiftpressed()

union REGS inregs,outregs;
Char statusbyte;

inregs. h. ah=KBDSTATUS;
int86(KBDINT,&inregs,&outregs);

statusbyte=outregs. h. al; **

status-byte=statusbyte & 0x43;
/* mask sixth bit for 'CAPSLOCK'*/
/* first and second bit for */
/* left and right 'SHIFT' keys */

switch (statusbyte) <

case 1: return(TRUE); /* right shift key pressed %,q

V,
case 2: return(TRUE); /* left shift key pressed

case 3: return(FALSE); /* both right and left shift key*/
/* pressed.

case 64: return(TRUE); /* CAPS LOCK is on

case 65: return(FALSE); /* CAPS LOCK and right shift key*/

case 66: return(FALSE); /* CAPS LOCK and left shift key */

case 67: return(TRUE); /* three of them is active */

default:return(FALSE); ',

97'

A
%I

/I*********************************'*****************-**************,

MODULE : DLADT. C

VERSION: 1.0

AUTHOR Metin AKINCI

DATE : 10 MAY, 1988

EXPLANATION:
General purpose Doubly Linked List

abstract data type.
Application side has to provide pointer to linked
list and pointer to data .
Appropriate compare function must be provided by
user of this module.

Implementation of this module is
independent from data structure. It has been
implemented by using C language's generic pointer
feature.

CHANGE LOG:

#include "prport. h"

#include <mem.h>
#include <stdlib. h>
#include <stdio. h>
#include <alloc. h>

typedef char DATA;
/* generic pointer to data */

typedef struct DLNODE /* Doubly linked list node
/* data structure

DATA * pdata; /* generic pointer to data */
struct DLNODE *left; /* pointer to left node */
struct DLNODE *right; /* pointer to right node
DLNODE;

typedef struct DLLIST /* Doubly Linked List structure */

DLNODE *head,*tail,*curr;
DLLIST;

98

A A..

DL..ALLOC(): Creates doubly linked list. Returns pointer to
dilist.

DLLIST*
dl alloc()

DLL.ST*dl
pdl= (DLLIST *) malloc(sizeof(DLLIST));
if (!pdl)
return(NULL);

pdl->head=NULL; /* initialize to null
pdl->tail=NULL;
pdl ->curr=NULL;
return(pdl); /* either null or succesful pdl *

DL..FINDO: Finds data in the doubly linked list and sets
current pointer then returns pointer to data found.

DATA*
dl .find(pdl ,pnode ,pfcmp)

DLLIST *pdl;
DATA *pnode;
mnt (* pfcmp)(); .

mnt comp;
if (! pdl->head)

return(NULL); /* list is empty *
pdl ->currpdl ->head;
while (pdl->curr)

comp=(*pfcnip)(pnode,pdl->curr-,>pdata);
if (compO0)

return(pdl ->curr->pdata);
else if (cornp<O)

return(NULL);

pdl->currpdl->curr->right;

Ireturn(NULL);

DLDELETEO: Deletes data provided by user from dilist
Returns TRUE if attemp is succefull otherwise FALSE.%

Bool
dl .delete(pdl ,pnode,pfcnp)

DLLIST *pdl;
DATA *pnode;
mnt (*pfcmp)();.

DATA * tempnode;

if (!(tempnode~dl-find(pdl,pnode,pfcmp)))
return(FALSE); /* not exists *

free(tempnode);

if (pdl->head-pdl->curr)
pdl->headpdl->curr->right;

/* if it is first element *

if (dl->ail=pdl-curr

ipdl->tail=pdl->curr)>et

/* if it is last element *

if (pdl->curr->left)
pdl->curr->left->rightpdl->curr->right;

if (pdl->curr->right) '

pdl->curr->right->left=pdl->curr->left;

free(pdil->curr); /* delete the node *
pdl->currpdl->head; /* reset the current pointer *

return(TRUE);

II

DLADDO: Adds data provided by user into doublu linked list.Il
Returns False in case of failure.

Boo 1
dladd(pdl ,pnode,pfcmp) ~c
DLLIST *pdl;
DATA *pnode;
mnt (*pfcmp)();

DLNODE *pdlnode;

if (dl...find(pdl,pnode,pfcmp))
return(FALSE); /*already exists in the list *

pdlnode=(DLNODE*) malloc (sizeof(DLNODE)); ,

pdlnode ->pdatapnode; A

if (pdl->head=NULL)

pdl ->head=pdl ->tai l=p(:lnode;
pdlnode ->right~pdlnode->left=NULL;

else if (pdl->currNULL) /* my node is the greatest *

pdl->tail->rightpdlnode;
pdlnode->leftpdl->tail;
pdl->tailpdlnode;
pdlnode->right=NULL;

else
(/* my node is somewhere either in

middle or at the beginning *
if (pdl->head=pdl->curr)

/* my node should be first *
pd) node->rightpdl->head;

pdl ->headpdlnode;

else

pdl->curr-> left->right~pdlnode;
pdlnode->rightpdl->curr;
pdlnode->leftpdl->cuir->left;
pdl ->curr->left~pdlnode;

return(TRUE);

W.~.
% %.

DL..FREEO: Deallocates memory allocated for doublu linked list.
Deallocation of memory allocated for user data is under
user responsibilty.

Boo 1
dljfree(pdl)

DLLIST *pdl;

DLNODE *tempnode;

if (!pdl)
return(FALSE); /* error *

if (!pdl->head)

free(pdl);
return(TRUE);

pdl->currpdl->head;
while (pdl->curr)

tempnode-pdl ->curr;
pdl ->currpdl->curr->right;
free(tempnode);

free(pdl);
return(TRUE);

DL...NEXT(): Sets the current pointer to next node in the list. 0
Returns pointer to next node data.

DATA*
dl-next(pdl)

DLLIST * pdl;

pdl->currpdl->curr->right;

if (!pdl->curr)
return(NULL);

return(pdl->curr->pdata);

102

DL..YRIORO: Sets the cuzrent pone to previous node.
Returns the pointer to prior node data.

DATA '

d1.prior(pdl) *'.

DLLIST *pdl;

{ if (!pdl->curr->left)
return(NULL);

pdl->currpdl->curr->left;
if (pdl->curr)
return(pdl->curr->pdata); P*&

return(NULL);

/~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~i it********************************~.

DL..FIRSTO: Sets the current pointer to first element in the list.0
Returns the pointer to first data in the list.

DATA*
dl...first(pdl)

DLLIST * pdl;

pdl ->currpdl ->head; .0
if (pdl->curr)
return(pdl->curr->pdata);

return(NULL);

DL...LAST: Sets the current pointer to last item in the list
Returns pointer to last data in the list.

DATA*
dl..last(pdl)

DLLIST *pdl;

pdl->curr=pdl->tail;
if (pdl->curr) .

return(pdl ->curr->pdata); .

return(NULL);

DL...URRO: Returns pointer to data pointed by current pointer.

DPTA* * "

dl 5 curr(pdl) 'U

DLLIST *pdl;

if (pdl->curr)
return(pdl->curr->pdata);

return(NULL);

,0

103

t

""'
MODULE : LLADT. C

VERSION: 1. 0

AUTHOR : Metin AKINCI

DATE : 15 MAY, 1988

EXPLANATION:
General purpose linked list implementation. ,

It has been implemented by using C language's ,
generic pointer feature.
Pointer to data and appropriate compare function
must be provided by application side.

CHANGE LOG:

*** / -

#include "prport. h"
#include <stdio. h>

typedef char DATA; /* generic pointer to DATA

typedef struct LLNODE /* define each node of the list */ i
DATA *pdata; /* generic pointer to data
struct LLNODE *next; /* pointer to next node */
LLNODE;

typedef struct LLIST /* linked list structure */ 1
LLNODE *head,*tail,*curr;

} LLIST;

N

104
,,i-. ..,,- .,-,.-,..,-.,,, .)) . v ; ; v: _ ,'L-' _ *-1

LLALLOC(; Creates an empty linked list.
Returns pointer to newly created list.

LLIST * S11 alloc(J.

LLIST *pll;

plI= (LLIST *)malloc(sizeof(LLIST));
if (p11)

pll->head=NULL;
pll->taiI=NULL;
pll->curr=NULL;

return(pll);

--*--A- AA AA A *****************************I

LL._FINDO: Finds any data in the linked list and returns pointer
to data. Appropriate compare function must be provided
by user of this module.

** /
DATA *

1l_ffind(pll ,pnode,pfcomp)
LLIST *pll;
DATA *pnode;
int (*pfcomp)();

int comp;

if (!pll->head) /* linked list is empty */ I

return(NULL);

pll->curr=pll->head; /* start from beginning */
while (pll->curr){

comp=(*pfcomp) (pnode,pll->curr->pdata);
if (comp-O) /* data is found in the list */
return(pll->curr->pdata); eS..

else if (comp<O)",
return(NULL); /* it is smaller than first */ ,'.
pll->curr=pll->curr->next;

/* keep searching */

return(NULL);

%P .

105
S-.P V

,55

-.i: .1i
.. - :"

:
" "'"J " :" " "'" ' " ""5 " "" " -' "" " NA " " "

LL.DELETEO: Deletes data from linked list. Returns TRUE '

if attempt is succesful otherwise FALSE.

Boo 1IF
11_delete(pll,pnode,pfconp)

LUIST '*pli;
DATA *'pnoue;
mnt (*pfcomp):);

LLNODE *tempnode;
DATA *temp;

if (!(templl-find(pll,pnode,pfcomp)))
return(FALSE); /* not exists in the list

tempnode=pll->curr; /* if exists,save the pointer *
/* to the data to be deleted *

if (pll->head=pll->curr) /* if it is first element in list*/

{ l-ha~l->ur>et
free(pll->curr);
return(TRUE);

if (pll->tail-=pll->curr) /* if it is last element in the list*/

pll->currpll->head; /* find the previous node
while (pll->curr->nextlp11->tail)

pll->currpll1->curr->next;
pll->tail=pll->curr;
return(TRUE); 1* return the new last item ~

/* otherwise it is somewhere
in the middle *

pll->currpll->head;
while (pll->curr->next !=tempnode)

pll->currpll->curr->next;
tempnodepll->curr;
tempnode->nextteipnode->next ->next;
free(tempnode->next);
return(TRUE);

106

N ~ ~ ~ - V

.0

LL_NEXTO: Sets the current pointer to next node and
returns pointer to data in the next node of list.

DATA * -
llnext(pll)

LLIST *pll;

pll->curr=pll->curr->next;
if (pll->curr)

return(pll->curr->pdata);
return(NULL);

LL_FIRST): Sets the current pointer to first item in the list.
Returns pointer to data in the first node of list.******************************* *************************** S

DATA
ll_first(pll)

LLIST * pll;{
pll->curr=pll->head;
if (pll->curr)

return(pll->curr->pdata);
return(NULL);

LL_LASTQ: Sets the current pointer to the last item in the list.
Returns pointer to data in the last node.

DATA*

LLIST *pll;

pll->curr=pll->tail;
if (pll->curr)

return(pll->curr->pdata); .
return(NULL); "

4'

107

B0 N

LL...ADD: Adds new item into linked list. Appropriate compare
function must be passed by user. Returns FALSE if item .
to be added is already in list.

Bool
ll..add(pll ,pnode,pfcomp)

LLIST '*pll; /* pointer to linked list *
DATA *pnoce;
mnt (*pfcoiip)();

LLNODE *temp ,*tempnode;

if (1-idpl nd*pcm)
return(FALSE); 1* already exists*19

/* prepare linked list node *
temp) (LLNODE *) malloc(sizeof(LLNODE));
temp ->pdata-pnode;

if (pll->headNULL) /* if linked list is empty *

pll->head=pll->tail-temp;
ternp->next=NULL;

else if (pll->currNULL)
/* mynode is the greatest *

p11 ->tail ->nexttemp;
pll->tailtemp;
temp->next=NULL;

else /* else my node is somewhere in *
{ /* the middle or at the beginning*/

if (pll->head=pll->curr)

pll ->headtemp;
temp->nextpl11->curr;

else

tempnodepl l->curr; / aetecretpitr1

pll->currpll->head; saetecrntpier *
/* start from beginning '
/* find the previous node

while (pll->curr->next! =tempnode)
pll->currpll->curr->next;

pll->curr->nexttemp; A'

temp ->nAeiik.JLpijUe

return(TRUE);

108

%-

LLFREEO: Deallocates the memory allocated for linked list.
Deallocation of memory allocated for data must be freed
before this function is invoked.

Boo 1
ll...free(pll)

LLIST *pll;

LLNODE *temp;

if (!pll) 1* error *
ret' n(FALSE);

if (!pll->head) 1* if linked list is empty 1.-.

free(pll);
return(TRUE); 0

pll->currpl l->head;
while (pll->curr)

temp-p11->curr;
pll->currpll->curr->next;__
free(temp);

free(pll);
return(TRUE);

% .''.

MODULE : EGACHR. C

VERSION: 1.0

AUTHOR Metin AKINCI

DATE : 15 APR, 1988

EXPLANATION: .,
This is a memory resident program. Creates

extra characters in the Turkish alphabet for EGA
adapter. This program reads the system info,
if EGA is present, it is installed.
Otherwise terminates by prompting user.

This program should compile and run outside
of integrated environment.

CHANGE LOG:

#include <stdio.h>
#include <dos. h>
#include <process. h>
#include <mem.h>
#include <stdlib. h>

S

#define TRUE I
#define FALSE 0

/* Functions related to video operations */ 5

void
loadegachr(char *fptr,int block,int bpc,int char_count,int spos);

void
get-egafont(char *fptr, int font);

int
getvideo info(void);

110

,.S4

/* Global variables and #DEFINEs related to video operations */

#include "egachr. asc" /* egachr. asc :ontains our *7
/* own character font ' /

"define VIDEO OxlO /* BIOS video interrupt
char fontarray[35851; /* buffer for font storage "7
char egacolor;

/* Global variables related to TSR operations */

unsigned save_bpl, savebp2, old-ds, old-psp;
unsigned oldenv;

/* Turbo C system variables */

extern unsigned brklvl; 6
extern unsigned _psp;

void
error(int errnum);

main()

int i, j, k;
union REGS regs;

getvideoinfoQ;
if (legacolor) regs.x.ax Ox7;

/* set the video mode */
else regs. x. ax = Ox3;
int86(VIDEO,®s,®s);

/* system checks out -- go ahead and put own chars. in font */

getegafont(fontarray, 14);
/* store the ROM font in fontarray */

for(i=14*128,j=O; i< 14"140;j++)

for(k=O; k<14; k++)
/* overwrite our own characters */ S

fontarray[i++] = egachr array(j](k];

loadegachr(fontarray,O, 14,256,0);
/* load our font

/* terminate and stay resident. Program length is determined by*/
/* subtracting the psp address (_psp) from _brkval which is */
/* dynamically set to the address of the end of DS. */

keep(FALSE,_DS + (_brklvl + 15)/16 _psp);

/* LOADEGACHR -- Load a user-defined font and reset page length. *
/* Parms: ptr. to user table, block to load, bytes-per-char,
/'* number of chars to store, starting position in font table.
/,/p '

void
loadegachr(char *cfptr,int block,int bpc,int char-count,int spos) Ie

.Is.
unsigned byte-.block;

byte~block = (bpc << 8) 1 block;

_ES = _DS;
_AX = OxllOO; /* call function Oxil1*

BX= byte..block; /* block to load .

_CX = char..count; /* number of characters to load *
_DX = spos; /* character offset into table */
savejbp2 = _BP; 1* save BP for stack addressing *
_BP = FP...OFF(fptr); /* load address of user font *
geninterrupt(VIDEO);

BP=save..bp2;

/* GETEGAFONT: This routine grabs an EGA font from ROM *
/* and stores it in the global variable fontarray '

void
~et...egafont(char *fptr, mnt font)

struct REGPACK regs;

regs.r..ax =Oxll3O; /* EGA BIOS call to return font *
if (font =8)

regs. rbx = x0300;
else if (font =14) regs.r..bx = 0x0200;

intr(VIDEO ,®s);
movedata(regs.r r~es ,regs. r..bp,_.DS, (unsigned) fptr, 14*256);

/* GET__VIDEO-INFO: A VGA or an EGA must be installed for this *
/* program to work. The monitor must be an Enahanced Color or *
/* Monochrome display and the correct adaptor must be active. '

et video_ info()

union REGS regs;
unsigned char e..byte;

/* First check for the presence of an EGA *
regs. h. ah = 0x12; /* EGA BIOS alternate select 1'
regs.h.bl = OxlO; /'* return EGA information. %1
int86(VIDEO, ®s, ®s);
if (regs.h.bl =OxlO) error(l); /* EGA not found * A

1124

/* EGA is present -- is it active? */
e byte = peekb(O,0x487);

/* EGA info. byte
if (e byte & 8) error(2);

/* EGA not active */

/* Does the present, active EGA drive a color or mono monitor? */

if (regs. h. bh) egacolor = FALSE;
/* EGA drives a mono monitor */

else ega-color = TRUE; /* EGA drives a color monitur */

/* See if EGA drives an Enhanced Color Display

if (egacolor)
if (!(regs.h.cl =-- 3 regs.h.cl = 9))

error(1); S
return (1);

/* ERROR: A simple error handler.
void

error(int errnum) A

switch (errnum)

case 1: printf(" An EGA and Enhanced Color or Monochrome Display");
printf(" nmust be present to use this program.);
break;

case 2: printf(" Please make the EGA the active adapter");
printf("in order to run this program.");
break;

default: break; N.

printf(" nProgram exiting. n");
exit(Oxf); /* Return code for DOS errorlevel */

A..

113

W'

1* FILE NAME: EGACHR.ASC .

/* egachr.asc: This is an ASCII representation of the italic font ~
/* characters used in egachr.C. This file is #includeD.
/' In the table below, each row corresponds to a character. The '
/* 14 elements of each row correspond to the 14 scan lines of the '

/'* character. '

char egachr.array[12] [14] {
{OxOO, OxOO, OxOO, OxOO, OxOO, 0x78, Oxcc,
0x60,0x38, Oxcc, 0x78, OxOO, 0x30, OxOO },a

/* S */
(OxOO, OxOG, 0x78, Oxcc, OxcO, OxeO, 0x38,
OxOc, OxOc, Oxcc, 0x78, QxOO, 0x30, OxOO},

/* S * 1

{OxOO, OxOO, QxOO, 0x66, OxOO, Ox7c, Oxc6,
Oxc6, Oxc6, Oxc6, Ox7c, OxOO, OxOO, OxOO),

/* 0*

{Ox6c, OxOO, 0x38, 0x44, Oxc6, Oxc6, Oxc6,
Oxc6, Oxc6, 0x44, 0x38, OxOO, OxOO, OxOQ

/* 0/
OXOO, OxOO, OxOO, Qxcc, OxOG, Oxcc, Oxcc,
Oxcc, Oxcc, Oxcc, Ox7c, OxOO, OxOO, OxOO) ,

/* U
{OxOG, Oxc6, OxOO, Qxc6, Oxc6, Oxc6,Oxc6,
Oxc6, Oxc6, Oxc6, Ox7e, OxOO, OxOO, OxOOJ

/* U *
{OxOO, OxOO, OxOO, Ox7c, OxOO, Ox7e, Oxcc,
Oxcc, Oxcc, Ox7c, OxO:z, Oxcc, 0078, OxOQ

/* £ *
{Ox3c, OxOO, Ox3c, 0x66, OxcO, OxcO, OxcO,
Oxde, Oxc6, 0x66, Ox3a, OxOO, OxCO, OxOO}

/* G */ .

{OxOO, OxOO, OxOQ, OxOO, OxOO, 0078, Oxcc,
OxcO, OxcO, Oxcc, 0x78, OxOG, 0x30, OxOG

/* C
OxOO, OxOO, Ox3c, 0x66, Oxc2, OxcO, OxcO,
OxcO, Oxc2, 0x66, Ox3c, OxOO, 0x18, OxOO

1* C *
{OxOO, OxOO, OxOO, OxOG, OxOO, 0x38, 0x18,
OxlS, 0x18, 0x18, Ox3c, OxOO, OxOO, OxOO },a.

/* i */ i..,
{ x18, OxOO, Ox3c, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, Ox3c, OxOO, OxOO, OxOO

/*1*

114'

PRPORT, H :Project portabilty header file

Contains programmer defined data types, printers, systems
and comoilers.

/* Programmer defined data types */ "

typedef unsigned char Char;

typedef int Int;

typedef long int Long;

typedef short int Bool;

typedef unsigned char BYTE;_0

typedef unsigned int WORD;

#define Void void

#define EXTERN /**/

#define TRUE (Bool) 1

#define FALSE (Bool) 0 "4-

#define GLOBAL /**/ .'

/* define compilers */

#define TC I /* Turbo C Compiler */

#define LC 0 /* Lattice C compiler /7
#define MSC 0 /* Microsoft C Compiler
#define IBMC 0 /* IBM C Compiler

/* define OPERATING SYSTEMS */

#define DOS 1 /* DOS
#define SYS5 0 /* System-V O/S */
#define CPM 0 /* CPM O/S /
#define UNIX 0 /* UNIX O/S */

/* define PRINTERS */

#define EPSON 1
#define IBMPROPRINTER 0
#define OKIDATA 0

',i

115

Np

KEYDEF.H Contains keyboard scan codes.

"define XF 0xl00

#define K_PDN 81 XF
#define K LEFT 75 XF
#define KRIGHT 77 XF
#define KUP 72 XF
#define KCTRLH 8
#define KDOWN 80 XF
#define KESC 27
#define K-SPACE 32
#define KDEL 83 XF
#define KBACKSP 15
#define KRETURN 13
#define K HOME 71 I XF
#define KEND 79 I XF
#define KPGUP 73 I XF
#define KCTRLZ 26
#define BELL 7
#define K CEND 117 XF
#define KALTC 46 XF
#define KALTG 34 XF
#define KALTI 23 XF
#define KALTO 24 XF
,,define KALTS 31 XF
#define KALTU 22 XF
#define LF (Char) 10
#define BLANK (Char) 32
#define CR (Char) 13

,%a

'a'.

a1v

1'

"'

"a,
116 "" ,

BIOSLIB.H This file contains all BIOS definitions used in program.

#define VIDEO OxlO /* BIOS VIDEO INT 10 */ .K

#define KEYIN 0x7 /* DOS function kbd input w/o echo */

/* VIDEO routine service numbers
placed in AH register before a
BIOS interrupt 10h. */

#define CURPOS 2
#define GET-CUR 3
#define SCROLL_UP 6
#define SCROLLDN 7
#define WRITECHAR 10
#define WRC_ATT 9 /* write char with attribute */
#define REC_ATT 8 /* read char with attribute */
#define SETVDPG 5 /* BIOS Video service 5

sets active video page */
#define GETVDMOD 15 /* BIOS Video service 15

gets current video information*/ .

#define KBDINT 0x16 /* BIOS keyboard interrupt number*/

#define KBDSTATUS 2 /* kbd status function number */

#define LOBYTE 0x00FF /* Bit mask for low byte */

#define HIBYTE OxFFOO /* bit mask for high byte */
/* define video attributes */

#define ATTR 65 /* BYTE Attribute is RED background*/
/* BLUE foreground. */

.

117

- .J~ %d'~ ****% 'KS *: 'K~~*y,
5

5 K - ~ J V *- K-V

-. 7

FILE NAME: MYASCII.NUM *
/ Definitions of ascii number assigned for extra *
1* characters in the Turkish alphabet. *

#Adefine ascii-s 128

#define ascii-S 129

#/define ascii-o 130

#define ascii_0 131

#define ascii-u 132

#/define ascii-U 133

#/define ascii..g 134

#/define ascii-G 135

#define ascii-c 136

1#define ascii-C 137

#/define ascii-i 138

#/define asciiI 139

F4

/* FILE NAME: EPSON.DAT */

/* Definitions of Standard printer control commands /
/* for EPSON and Compatible Printers

char p-init[] =" 033@"; /* hardware reset */

char p-bold[]=" 033E"; /* emphasized mode

char p.ds[] = " 033G"; /* double strike mode

char p-ital[]= 0334"; /* italicized mode

char p-cmp[]= " 017"; /* condensed mode

char p exp[]= " 016"; /* cxpanded mode

char p ul[]=" 033-1"; /* underlined mode

char p cbold[] = " 033F"; /* cancel emphasized mode */

char p cds[] = " 033H"; /* cancel double strike mode */

char p cital[]=" 0335"; /* cancel italic mode

char p-ccmp[]=" 022"; /* cancel condensed mode /.'A

char p-cexp[]=" 024"; /* cancel expanded mode */ A

char p.-.cul[) 27,'-',0);

char p-grmode[4] { (char) 27,'K',(char)8,(char)0 }
/* set to dot graphics mode

char pdefault[]=" 033P"; :.'

#define FF 12 _

#define LF 10

% "%

V J.V

• ,NB

FIL NAE -.N

/'* Here extra character font pattern for printers are given. '

char c...pattern [8] = Oxlc,0x22,0x23,0x23,0x22,OxOO,OxOQ,OxOO};

char CQ..pattern [8 1={Ox7c,0x82,0x83,0x83,0x82,0x44,OxOO,QxOO};

char ipattern [8]3 = { OxQO,OxOO,0x22,Qx3e,0x02,OxOO,OxOO,OxOO

char CI..pattern C 8]3 = (OxOO,OxOO,0x42,Oxfe,0x42,OxOO,OxOO,OxQO }

char o...pattern [8 3={ Oxlc,Oxa2,0x22,0x22,Oxa2,Oxlc,OxOO,OxOO
char CO..pattern [8 3=(Ox3c,Oxc2,0x42,0x42,Oxc2,Ox~c,OxOO,OxOO ;

char s...pattern C 8]3 = t Ox12,Ox2aOx2b,Ox2b,Ox2a,OxO4,QxQO,OxOO

char CS..pattern [8] = { 0x64,0x92,0x93,0x93,0x92,Ox4c,OxOQ,OxOO};

char u..pattern [8 3={Ox3c,0x82,0x02,0x82,Ox3c,0x02,OxOO,OxOQ

char CtL.pattern C 8 3 = (Ox7c,0x02,0x82,0x82,0x02,Ox7c,OxOO,OxOO4

char g...pattern [8]3 = (0x32,Oxc9,Oxc9,Oxc9,Ox7e,OxOO,OxOO,QxOO ;

char CG...pattern C 8]3 = {Ox3c,Oxc2,Oxc2,Oxca,Oxca,Ox2c,OxOO,OxOO

lb

120

.1 '.k

APPENDIX D. EXAMPLE TEMPLATE AND PROGRAM OUTPUT

DOCUMENT

* EXAMPLE TEMPLATE DEFINITION
* This is a comment line
DURUM RAPORU
* row column width editable message
3 30 30 0 @ T. C @
4 30 30 0 @ Dz.K.K @ -

5 30 30 0 @ TCG. PIYALEPASA K. ligi @
8 55 20 1 @Tarih: @
10 30 30 0 @HAZIRLIK DURUM RAPORU @
11 29 30 0 @ --------------------- @
12 5 20 1 @IDARI:@
15 5 20 0 @PERSONEL :@
16 5 20 0 @ @-------------@
18 30 30 0 @ TAM KADRO MEVCUT @
19 25 40 0 @ ------ -------------- ----------------- @
21 10 30 1 @SUBAY @
21 41 20 1 @@
22 10 30 1 @ASTSUBAY @
22 41 20 1 @@
23 10 30 1 @ERAT @
23 41 20 1 @@
26 5 20 0 @MATERYAL :
27 5 20 0 @ ---------- @
29 30 30 0 @ TAM MEVCUT IHTIYAC @
30 25 35 0----------------------- ------------- @
32 10 30 1 @A. GIDA :@
32 41 20 1 @@
34 10 30 1 @B. SU :@
34 41 20 1 @
36 10 '30 1 @C. YAKIT :@
36 41 20 1 @@
38 10 30 1 @C. YAG :@
38 41 20 1 @@
45 5 30 0 @ DAGITIM :@
46 5 30 0 @ ------------ @
49 50 20 0 @ KOMUTAN @
11 NEXT TEMPLATE

121

v:2. :

T,~ ~ J'~ V.-,, 77777 . 7.7- . 'r -d% - p).w-r

T. C
Dz. K. K

TCG. PIYALEPASA K. ligi

Tar ii:

HAZIRLIK DURUM RAPORU

IDARI:

PERSONEL

TAM KADRO MEVCUT

SUBAY
ASTSUBAY
ERAT.

MATERYAL

TAM MEVCUT IHTIYAC

A. GIDA .

B. SU
- '1

C. YAKIT

D. YAG

b.

DAGITIM

KOMUTAN

122

LIST OF REFERENCES

1. Turbo C Compiler Reference Afanual Version 1.0

2. Parnas, David L., On the Criteria to be used in Decomposing Systems into Modules,

Communications of the ACM, Volume 15, Number 12, December 1972.

3. Liskov, Barbara. Modular Program Construction Using Abstractions MIT labora-

tory for Computer Science, Computation structures group memo 184, September

1979.

4. Parnas, David L., Information Distribution Aspects of Design Methodolgy, Pro-

ceedings of 1971 IFIC Congress, Amsterdam, The Netherlands North Island Pub-
lishing Company, 1971.

5. IBM Technical Reference Manual, Volume I.

6. IBM Technical Reference Manual, Options and Adapters, Volume Ii, Chapter 4.

7. IBM Proprinter Reference Manual

I
I

123

'f Z"5f

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical lnformation Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Deniz Kuvvetleri Komutanligi 4
Bakanliklar
Ankara, Turkey ,

4. Deniz Harp Okulu Komutanligi Kutuphanesi 1
Tuzla
Istanbul. Turkey

5. Department Chairman, 52Mz 1
Computer Science
Naval Postgraduate School -,
Monterey, CA 93943

6. Daniel Davis
MBARI .
160 Central
Pacific Grove, CA 93950 .

7. John Yurchak, 52Yu 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943 wI,

8. Lt.JG Metin AKINCI 2,%
Bakirkov Akatlar Sok No 9,6
Istanbul, Turkey ,

9. Metin G. Ozisik 1
427 West Str.
Salinas. CA 93901

1N

124 'S

0

